Skip to main content

Advertisement

Log in

Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A”

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cyclosporin A (CyA) is a secondary metabolite mainly produced by Tolypocladium inflatum. CyA is a non-polar cyclic polypeptide that is widely used in medicine. Its importance is due to its immunosuppressive role making it useful for the treatment of autoimmune diseases, although to some extent, it showed anti-fungal and anti-parasitic properties. In this review, we discuss the biosynthetic pathway, fermentative production (increasing production efficiency by cells, appropriate, and new fermentation process), downstream processing (efficient extraction and purification), and pharmacological activities of CyA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rao HCY, Kamalraj S, Jayabaskaran C (2020) Fascinating fungal endophytes associated with medicinal plants: recent advances and beneficial applications, 1st edn. Woodhead Publishing, pp 263–289. https://doi.org/10.1016/B978-0-12-818734-0.00011-5

  2. Demain AL (2000) Small bugs, big business: the economic power of the microbe. Biotechnol Adv 18:499–514

    Article  Google Scholar 

  3. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  Google Scholar 

  4. Ghanbari T, Seid Mohammadkhani H, Babaeizad V (2014) Identification of some secondary metabolites produced by four Penicillium species. Mycologia Iranica 1:107–113

    Google Scholar 

  5. Dreyfuss M, Härri E, Hea H, Kobel H, Pache W, Tscherter H (1976) Cyclosporin a and C. Eur J App Microbiol Biotechnol 3:125–33

    Article  Google Scholar 

  6. Sallam LA, El-Refai A-MH, Hamdi A-HA, El-Minofi HA, Abd-Elsalam IS (2005) Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J General App Microbiol 51:143–9

    Article  Google Scholar 

  7. Anjum T, Azam A, Irum W (2012) Production of cyclosporine A by submerged fermentation from a local isolate of Penicillium fellutanum. Indian J Pharm Sci 74:372

    Article  Google Scholar 

  8. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    Article  Google Scholar 

  9. Polizzi V, Adams A, Picco AM, Adriaens E, Lenoir J, Van Peteghem C et al (2011) Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Build Environ 46:945–954

    Article  Google Scholar 

  10. Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  Google Scholar 

  11. Diamanti AP, Rosado M, Germano V, Scarsella M, Giorda E, Podestà E et al (2011) Reversion of resistance to immunosuppressive agents in three patients with psoriatic arthritis by cyclosporine A: Modulation of P-glycoprotein function. Clin Immunol 138:9–13

    Article  Google Scholar 

  12. Ismaiel AA (2017) Production of the immunosuppressant cyclosporin A by a new soil isolate, Aspergillus fumigatus, in submerged culture. Appl Microbial Cell Physiol 1–13. https://doi.org/10.1007/s00253-016-8052-0

  13. Survase SA, Kagliwal LD, Annapure US, Singhal RS (2011) Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29:418–435

    Article  Google Scholar 

  14. Tanseer S, Anjum T (2011) Modification of c and n sources for enhanced production of cyclosporin’a’by Aspergillus Terreus. Braz J Microbiol 42:1374–1383

    Article  Google Scholar 

  15. Abdel-Fattah Y, Enshasy HE, Anwar M, Omar H, Abolmagd E (2007) Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture. J Microbiol Biotechnol 17:1930–1936

    Google Scholar 

  16. Balaraman K, Mathew N (2006) Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J Med Res 123:525

    Google Scholar 

  17. Agathos S, Marshall J, Moraiti C, Parekh R, Madhosingh C (1986) Physiological and genetic factors for process development of cyclosporine fermentations. J Ind Microbiol 1:39–48

    Article  Google Scholar 

  18. Nisha A, Meignanalakshmi S, Ramasamy K (2008) Comparative effect of amino acids in the production of cyclosporine A by solid and submerged fermentations. Biotechnology 7:205–208

    Article  Google Scholar 

  19. Berton P, Mishra MK, Choudhary H, Myerson AS, Rogers RD (2019) Solubility studies of cyclosporine using ionic liquids. ACS Omega 4:7938–7943

    Article  Google Scholar 

  20. Amarouche N, Boudesocque L, Sayagh C, Giraud M, McGarrity J, Butte A et al (2013) Purification of a modified cyclosporine A by co-current centrifugal partition chromatography: process development and intensification. J Chromatogr A 1311:72–78

    Article  Google Scholar 

  21. Survase SA, Bacigalupi C, Annapure US, Singhal RS (2009) Use of coconut coir fibers as an inert solid support for production of cyclosporin A. Biotechnol Bioprocess Eng 14:769–774

    Article  Google Scholar 

  22. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    Article  Google Scholar 

  23. Liddicoat AM, Lavelle EC (2019) Modulation of innate immunity by cyclosporine A. Biochem Pharmacol 163:472–480

    Article  Google Scholar 

  24. Borel JF, Feurer C, Magnee C, Stähelin H (1977) Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 32:1017

    Google Scholar 

  25. Řeháček Z, De-xiu Z (1991) The biochemistry of cyclosporin formation: a review. Process Biochem 26:157–166

    Article  Google Scholar 

  26. Wenger R (1985) Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production. U.S. Patent No. 4,554,351

  27. Price DA, Eng H, Farley KA, Goetz GH, Huang Y, Jiao Z et al (2017) Comparative pharmacokinetic profile of cyclosporine (CsA) with a decapeptide and a linear analogue. Org Biomol Chem 15:2501–2506

    Article  Google Scholar 

  28. Fliri HG, Wenger RM (2019) Cyclosporine: synthetic studies, structure-activity relationships, biosynthesis and mode of action. De Gruyter, Biochemistry of Peptide Antibiotics, pp 245–288

    Google Scholar 

  29. Spitzfaden C, Braun W, Wider G, Widmer H, Wüthrich K (1994) Determination of the NMR solution structure of the cyclophilin A-cyclosporin A complex. J Biomol NMR 4:463–482

    Article  Google Scholar 

  30. Mikol V, Kallen J, Pflügl G, Walkinshaw MD (1993) X-ray structure of a monomeric cyclophilin A-cyclosporin A crystal complex at 2·1 Å resolution. J Mol Biol 234:1119–1130

    Article  Google Scholar 

  31. Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G et al (1994) Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 330:1841–1845

    Article  Google Scholar 

  32. Rosenthaler J, Keller HP (1990) Comment on cyclosporine assay techniques: an attempt for recommendations. 22(3):1160–1165

  33. Ismailos G, Reppas C, Dressman JB, Macheras P (1991) Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol 43:287–289

    Article  Google Scholar 

  34. Hasumi H, Nishikawa T, Ohtani H (1994) Effect of temperature on molecular structure of cyclosporin A. Biochem Mol Biol Int 34:505–511

    Google Scholar 

  35. Czogalla A (2009) Oral cyclosporine A-the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett 14:139–152

    Article  Google Scholar 

  36. Penkler LJ, Müller RH, Runge SA, Ravelli V, inventors; Pharmatec International SRL, assignee (2003) Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. United States patent US 6,551,619

  37. Lawen A, Zocher R (1990) Cyclosporin synthetase The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem 265:11355–60

    Article  Google Scholar 

  38. Lawen A, Traber R (1993) Substrate specificities of cyclosporin synthetase and peptolide SDZ 214–103 synthetase Comparison of the substrate specificities of the related multifunctional polypeptides. J Biol Chem 268:20452–65

    Article  Google Scholar 

  39. Weber G, Leitner E (1994) Disruption of the cyclosporin synthetase gene of Tolypocladium niveum. Curr Genet 26:461–467

    Article  Google Scholar 

  40. Kürnsteiner H, Zinner M, Kück U (2002) Immunosuppressants. Springer, Industrial Applications, pp 129–155

    Google Scholar 

  41. Velkov T, Lawen A (2003) Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors—cyclosporin synthetase as a complex example. Biotechnol Annu Rev 9:151–197

    Article  Google Scholar 

  42. Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C (2018) Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. MBio 9:e01211-e1218

    Article  Google Scholar 

  43. Velkov T, Horne J, Scanlon MJ, Capuano B, Yuriev E, Lawen A (2011) Characterization of the N-methyltransferase activities of the multifunctional polypeptide cyclosporin synthetase. Chem Biol 18:464–475

    Article  Google Scholar 

  44. Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE et al (2013) The genome of Tolypocladium inflatum: evolution, organization and expression of the cyclosporin biosynthetic gene cluster. PLoS genetics 9:e1003496

    Article  Google Scholar 

  45. Di Salvo ML, Florio R, Paiardini A, Vivoli M, D’Aguanno S, Contestabile R (2013) Alanine racemase from Tolypocladium inflatum: a key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity. Arch Biochem Biophys 529:55–65

    Article  Google Scholar 

  46. Hoppert M, Gentzsch C, Schörgendorfer K (2001) Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch Microbiol 176:285–293

    Article  Google Scholar 

  47. Lazarova T, Weng Z (2003) Cyclosporin A analogues: recent advances. Expert Opinion on Therapeutic Patents 13(9):1327–32

  48. Traber R, Hofmann H, Kobel H (1989) Cyclosporins-new analogues by precursor directed biosynthesis. J Antibiot 42:591–597

    Article  Google Scholar 

  49. Loor F, Tiberghien F, Wenandy T, Didier A, Traber R (2002) Cyclosporins: structure− activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J Med Chem 45:4598–4612

    Article  Google Scholar 

  50. Mutter M, Wenger R, Guichou JF, Keller M, Ruckle T, Woehr T, inventors; Debiopharm SA, assignee (2004) Cyclosporin derivatives and method for the production of said derivatives. United States patent US 6,790,935 

  51. Liu Y, Ruan H, Li Y, Sun G, Liu X, He W et al (2020) Potent and specific inhibition of NTCP-mediated HBV/HDV infection and substrate transporting by a novel, oral-available cyclosporine A analogue. J Med Chem 64:543–565

    Article  Google Scholar 

  52. Irum W, Anjum T (2012) Production enhancement of Cyclosporin ‘A’by Aspergillus terreus through mutation. Afr J Biotech 11:1736–1743

    Google Scholar 

  53. Wagner H, Kreher B, Jurcic K (1988) In vitro stimulation of human granulocytes and lymphocytes by pico-and femtogram quantities of cytostatic agents. Arzneimittelforschung 38:273–275

    Google Scholar 

  54.  Wagner H, Kreher B, Arzneimittel-forschung JK (1988) In vitro stimulation of human granulocytes and lymphocytes by pico- and femtogram quantities of cytostatic agents. 38(2):273–275

  55. Zheng Z-W, Li J, Chen H, He J-L, Chen Q-W, Zhang J-H et al (2020) Evaluation of in vitro antileishmanial efficacy of cyclosporin A and its non-immunosuppressive derivative, dihydrocyclosporin A. Parasit Vectors 13:1–14

    Article  Google Scholar 

  56. Dawson J, Hurtenbach U, MacKenzie A (1996) Cyclosporin A inhibits the in vivo production of interleukin-1β and tumour necrosis factor α, but not interleukin-6, by a T-cell-independent mechanism. Cytokine 8:882–888

    Article  Google Scholar 

  57. Saitoh O, Matsuse R, Sugi K, Nakagawa K, Uchida K, Maemura K et al (1997) Cyclosporine A inhibits interleukin-8 production in a human colon epithelial cell line (HT-29). J Gastroenterol 32:605–610

    Article  Google Scholar 

  58. Kitahara K, Kawai S (2007) Cyclosporine and tacrolimus for the treatment of rheumatoid arthritis. Curr Opin Rheumatol 19:238–245

    Article  Google Scholar 

  59. Amor KT, Ryan C, Menter A (2010) The use of cyclosporine in dermatology: part I. J Am Acad Dermatol 63:925–946

    Article  Google Scholar 

  60. Lee J (2013) Cyclophilin A as a new therapeutic target for hepatitis C virus-induced hepatocellular carcinoma. Korean JPhys Pharmacol 17:375–383

    Article  Google Scholar 

  61. Franke EK, Luban J (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag–cyclophilin A interaction. Virology 222:279–282

    Article  Google Scholar 

  62. Rao SN (2006) Treatment of herpes simplex virus stromal keratitis unresponsive to topical prednisolone 1% with topical cyclosporine 0.05%. Am J Ophthalmol 141:771–2

    Article  Google Scholar 

  63. Velkov T, Lawen A Biosynthesis and molecular genetics of fungal secondary metabolites, Chapter 4: Cyclosporines: Biosynthesis and Beyond, 65–88. https://doi.org/10.1007/978-1-4939-1191-2_4

  64. Lee J (2010) Use of antioxidants to prevent cyclosporine a toxicity. Toxicol Res 26:163–170

    Article  Google Scholar 

  65. Dogra S, Mahajan R, Narang T, Handa S (2017) Systemic cyclosporine treatment in severe childhood psoriasis: a retrospective chart review. J Dermatol Treat 28:18–20

    Article  Google Scholar 

  66. Lai VWY, Chen G, Sinclair R (2021) Impact of cyclosporin treatment on health-related quality of life of patients with alopecia areata. J Dermatol Treat 32:250–257

    Article  Google Scholar 

  67. St.John J, Ratushny V, Liu KJ, Bach DQ, Badri O, Gracey LE et al (2017) Successful use of cyclosporin A for Stevens-Johnson syndrome and toxic epidermal necrolysis in three children. Pediatric Dermatol 34:540–6

    Article  Google Scholar 

  68. Nebbioso M, Alisi L, Giovannetti F, Armentano M, Lambiase A (2019) Eye drop emulsion containing 01% cyclosporin (1 mg/mL) for the treatment of severe vernal keratoconjunctivitis: an evidence-based review and place in therapy. Clin Ophthalmol (Auckland, NZ) 13:1147

    Article  Google Scholar 

  69. Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F et al (2017) Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol 66:685–692

    Article  Google Scholar 

  70. El Enshasy H, Fattah YA, Atta A, Anwar M, Omar H, Magd S et al (2008) Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor. J Microbiol Biotechnol 18:128–134

    Google Scholar 

  71. Hodge KT, Krasnoff SB, Humber RA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88:715–719

    Article  Google Scholar 

  72. Nakajima H, Hamasaki T, Nishimura K, Kondo T, Kimura Y, Udagawa S-i et al (1988) Isolation of 2-acetylamino-3-hydroxy-4-methyloct-6-enoic acid, a derivative of the “C9-amino acid” residue of cyclosporins, produced by the fungus Neocosmospora vasinfecta EF Smith. Agric Biol Chem 52:1621–3

    Google Scholar 

  73. Sallam LA, El-Refai A-MH, Hamdy A-HA, El-Minofi HA (2003) Abdel-Salam IS. Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. J General App Microbiol 49:321–8

    Article  Google Scholar 

  74. Sawai K, Okuno T, Terada Y, Harada Y, Sawamura K, Sasaki H et al (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228

    Google Scholar 

  75. Moussaïf M, Jacques P, Schaarwächter P, Budzikiewicz H, Thonart P (1997) Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl Environ Microbiol 63:1739–1743

    Article  Google Scholar 

  76. Azam A, Anjum T, Irum W (2012) Trichoderma harzianum: a new fungal source for the production of cyclosporin. Bangladesh J Pharmacol 7:33–35

    Article  Google Scholar 

  77. Ismaiel AA, El-Sayed E-SA, Mahmoud AA (2010) Some optimal culture conditions for production of cyclosporin a by Fusarium roseum. Brazil J Microbiol 41:1112–23

    Article  Google Scholar 

  78. Survase SA, Annapure US, Singhal RS (2009) Statistical optimization of cyclosporin A production on a semi-synthetic medium using Tolypocladium inflatum MTCC 557. Global J Biotechnol Biochem 4:184–192

    Google Scholar 

  79. Zocher R, Madry N, Peeters H, Kleinkauf H (1984) Biosynthesis of cyclosporin A. Phytochemistry 23:549–551

    Article  Google Scholar 

  80. Lee M-J, Lee H-N, Han K-B, Kim E-S (2008) Spore inoculum optimization to maximize cyclosporin a production in Tolypocladium niveum. J Microbiol Biotechnol 18:913–917

    Google Scholar 

  81. Lee J, Agathos S (1989) Effect of amino acids on the production of cyclosporin A by Tolypocladium inflatum. Biotech Lett 11:77–82

    Article  Google Scholar 

  82. Margaritis A, Chahal PS (1989) Development of a fructose based medium for biosynthesis of cyclosporin-A by Beauveria nivea. Biotech Lett 11:765–768

    Article  Google Scholar 

  83. Isaac C, Jones A, Pickard M (1990) Production of cyclosporins by Tolypocladium niveum strains. Antimicrob Agents Chemother 34:121–127

    Article  Google Scholar 

  84. Kannan N, Kalaichelvan P (2007) Production of immunosuppressant drug cyclosporin A from Tolypocladium inflatum in presence of L-valine. Allelopath J 19:549–553

    Google Scholar 

  85. Dong H, Jiang J, Yan T, Zhao J (2011) Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation. Archives of Biological Sciences 63:907–914

    Article  Google Scholar 

  86. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  Google Scholar 

  87. El-Sayed E, Ahmed A, Al-Hagar O (2020) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol 128:1427–1439

    Article  Google Scholar 

  88. Rigo E, Ninow JL, Di Luccio M, Oliveira JV, Polloni AE, Remonatto D et al (2010) Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Science and Technology 43:1132–1137

    Article  Google Scholar 

  89. Sekar C, Balaraman K (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng 18:293–296

    Article  Google Scholar 

  90. Murthy MR, Mohan E, Sadhukhan A (1999) Cyclosporin-A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280

    Article  Google Scholar 

  91. Sharmila K, Thillaimaharani K, Logesh A, Sathishkumar A, Kalaiselvam M (2012) Production of cyclosporin A by saprophytic filamentous fungus Fusarium oxysporum. Int J Pharm Pharm Sci 4:149–153

    Google Scholar 

  92. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  Google Scholar 

  93. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  Google Scholar 

  94. Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:958

    Article  Google Scholar 

  95. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9

    Article  Google Scholar 

  96. El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2019) Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. App Microbiol Biotechnol 103:8923–35

    Article  Google Scholar 

  97. Ismaiel A, Ahmed A, El-Sayed E (2015) Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated P enicillium roqueforti. J Appl Microbiol 119:112–126

    Article  Google Scholar 

  98. El-Sayed E-SR, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din A-ZA (2020) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess and Biosystems Engineering 43:997–1008

    Article  Google Scholar 

  99. Foster B, Coutts R, Pasutto F, Dossetor J (1983) Production of cyclosporin A by carrageenan-immobilized Tolypocladium inflatum in an airlift reactor with external loop. Biotech Lett 5:693–696

    Article  Google Scholar 

  100. Chun G-T, Agathos S (1989) Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporine production. J Biotechnol 9:237–254

    Article  Google Scholar 

  101. Survase SA, Annapure US, Singhal RS (2010) Gellan gum as immobilization matrix for production of cyclosporin A. J Microbiol Biotechnol 20:1086–1091

    Article  Google Scholar 

  102. Şeker Ş, Beyenal H, Ayhan F, Tanyolaç A (1998) Production of microbial rennin from Mucor miehei in a continuously fed fermenter. Enzyme Microb Technol 23:469–474

    Article  Google Scholar 

  103. El-Sayed E, Ahmed A, Abdelhakim H (2020) A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. J Appl Microbiol 128:747–762

    Article  Google Scholar 

  104. El-Sayed E-SR, Zaki AG, Ahmed AS, Ismaiel AA (2020) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. App Microbiol Biotechnol 104:6991–7003

    Article  Google Scholar 

  105. Ikehata H, Ono T (2011) The mechanisms of UV mutagenesis. J Radiat Res 52:115–125

    Article  Google Scholar 

  106. Faisal RM (2013) The application of the mutagen nitrous acid to improve the free living nitrogen fixation ability of Azotobacter spp. Rafidain J Sci 24:44–54

    Article  Google Scholar 

  107. Kim JW, Lee KM, Choi BT, Lee JM, Sung NK, Min KB, inventors; Chong Kun Dang Corp, assignee (1999) Process for manufacturing cyclosporin a by highly productive fusant strain. United States patent US 5,856,141

  108. Domratcheva A, Zhgun A, Novak N, Dzhavakhiya V (2018) The influence of chemical mutagenesis on the properties of the cyclosporine a high-producer strain Tolypocladium inflatum VKM F-3630D. Appl Biochem Microbiol 54:53–57

    Article  Google Scholar 

  109. Cirigliano AM, Cabrera GM (2014) Differentiation of cyclosporin A from isocyclosporin A by liquid chromatography/electrospray ionization mass spectrometry with post-column addition of divalent metal salt. Rapid Commun Mass Spectrom 28:465–470

    Article  Google Scholar 

  110. Pagans E, Font X, Sánchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179–186

    Article  Google Scholar 

  111. Tarus PK, Lang’at-Thoruwa CC, Wanyonyi AW, Chhabra SC (2003) Bioactive metabolites from trichoderma harzianum and trichoderma longibrachiatum. Bull Chem Soc Ethiop 17(2):185–190

  112. Jeleń H (2003) Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett Appl Microbiol 36:263–267

    Article  Google Scholar 

  113. Balaraman K, Mathew N, inventors; National Research Development Corp UK, assignee (1997) Process for the preparation of cyclosporin a from tolypocladium species. United States patent US 5,656,459

  114. Lam KB, Le Blanc JY, Campbell JL (2020) Separating isomers, conformers, and analogues of cyclosporin using differential mobility spectroscopy, mass spectrometry, and hydrogen–deuterium exchange. Anal Chem 92:11053–11061

    Article  Google Scholar 

  115. Hyung S-J, Feng X, Che Y, Stroh JG, Shapiro M (2014) Detection of conformation types of cyclosporin retaining intramolecular hydrogen bonds by mass spectrometry. Anal Bioanal Chem 406:5785–5794

    Article  Google Scholar 

  116. Johnas S, Dittrich B, Meents A, Messerschmidt M, Weckert E (2009) Charge-density study on cyclosporine A. Acta Crystallogr D Biol Crystallogr 65:284–293

    Article  Google Scholar 

  117. Alvarez AJ, Singh A, Myerson AS (2011) Crystallization of cyclosporine in a multistage continuous MSMPR crystallizer. Cryst Growth Des 11:4392–4400

    Article  Google Scholar 

  118. Wong SY, Tatusko AP, Trout BL, Myerson AS (2012) Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 12:5701–5707

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the Ferdowsi University of Mashhad (Grant # 3/53741) and the Iran National Science Foundation (Grant #99028947).

Author information

Authors and Affiliations

Authors

Contributions

Fereshteh Falah: Conceptualization, writing—review and editing. Alireza Vasiee: Writing—review and editing. Mohammad Ramezani: Writing—review and editing. Farideh Tabatabaee Yazdi: Conceptualization, writing—review and editing. Seyed Ali Mortazavi: Writing—review and editing. Abolghasem Danesh: Writing—review and editing.

Corresponding author

Correspondence to Farideh Tabatabaee-Yazdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falah, F., Vasiee, A., Ramezani, M. et al. Effect of immobilization, mutation, and microbial stresses on increasing production efficiency of “Cyclosporin A”. Biomass Conv. Bioref. 14, 4441–4456 (2024). https://doi.org/10.1007/s13399-022-02533-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02533-x

Keywords

Navigation