Skip to main content
Log in

Recombinant Production of Opiorphin Pentapeptide as Tandem Multimers Through Rational Design of Primers

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Opiorphin secreted into the human saliva is an endogenous regulator pentapeptide (QRFSR) showing a pain suppressant effect similar to morphine. We report here a strategy of producing tandemly repeated multimers of opiorphin peptide efficiently by expressing in Esherichia coli cells. For improving the expression level and increasing the yield of pentapeptide, 32-mer tandem sequence of opiorphin was generated by using partially complementary primers inserted into pGEX-2T expression vector, following fused with glutathione transferase (GST) gene. Recombinant tandem multimer was easily captured by GST column with a yield of 9.2 mg/L, and then 32-mer opiorphin polypeptide of 28.49 kDa size was cleaved into monomers by CNBr and endoproteinase Asp-N. Opiorphin polypeptides having a molecular weight of about 693 Da and containing 5 amino acids in length were then generated. The amount of cleaved and purified recombinant opiorphin monomers was calculated as 6.2 mg/L by the Bradford assay. Protein expression and cleavage of recombinant polypeptide were confirmed by SDS-PAGE and TLC. Results from this study clearly open a door to the mass production of the opiorphin peptide to use for laboratory research and industrial purposes. The overall gene construction and the direct cloning to an expression vector strategy using partially complementary primers with cleavable linker peptides could be applicable to many small peptides and their analogs for pharmaceutical and clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wisner, A., Dufour, E., Messaoudi, M., Nejdi, A., Marcel, A., Ungeheuer, M.N., and Rougeot, C., Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 47, pp. 17979–17984.

    Article  CAS  Google Scholar 

  2. Rougeot, C., Messaoudi, M., Hermitte, V., Rigault, A.G., Blisnick, T., Dugave, C., Desor, D., and Rougeon, F., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 14, pp. 8549–8554.

    Article  CAS  Google Scholar 

  3. Nishimura, K. and Hazato, T., Biochem. Biophys. Res. Commun., 1993, vol. 194, no. 2, pp. 713–719.

    Article  CAS  Google Scholar 

  4. Tong, Y., Tar, M., Melman, A., and Davies, K., BJU Int., 2008, vol. 102, pp. 736–740.

    Article  Google Scholar 

  5. Rougeot, C., Rosinski-Chupin, I., Njamkepo, E., and Rougeon, F., Eur. J. Biochem., 1994, vol. 219, pp. 765–773.

    Article  CAS  Google Scholar 

  6. Rougeot, C., Robert, F., Menz, L., Bisson, J.F., and Messaoudi, M., J. Physiol. Pharmacol., 2010, vol. 6, pp. 483–490.

    Google Scholar 

  7. Tian, X., Chen, J., Xiong, W., He, T., and Chen, Q., Peptides, 2009, vol. 30, pp. 1348–1355.

    Article  CAS  Google Scholar 

  8. Thanawala, V., Kadam, V.J., and Ghosh, R., Curr. Drug Targets, 2008, vol. 10, pp. 887–889.

    Article  Google Scholar 

  9. Yang, Q.Z., Lu, S.S., Tian, A.M., Yang, A.M., Ge, W.W., and Chen, Q., Neurosci. Lett., 2011, vol. 489, pp. 131–135.

    Article  CAS  Google Scholar 

  10. Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., and Verlander, M., Biopolymers, 2000, vol. 55, no. 3, pp. 227–250.

    Article  CAS  Google Scholar 

  11. Ingham, A.B., and Moore, R.J., Biotechnol. Appl. Biochem., 2007, vol. 47, pp. 1–9.

    Article  CAS  Google Scholar 

  12. Li, Y., and Chen, Z., FEMS Microbiol. Lett., 2008, vol. 289, no. 2, pp. 126–129.

    Article  CAS  Google Scholar 

  13. Li, Y., Biotechnol. Appl. Biochem., 2009, vol. 6, no. 54/1, pp. 1–9.

  14. Wieles, B., Nagai, S., Wiker, H.G., Harboe, M., and Ottenhoff, T.H., Infect. Immun., 1995, vol. 63, no. 12, pp. 4946–4948.

    Article  CAS  Google Scholar 

  15. Sheibani, N., Prep. Biochem. Biotechnol., 1999, vol. 29, no. 1, pp. 77–90.

    Article  CAS  Google Scholar 

  16. Sambrook, J.F. and Russell, D.W., Molecular Cloning: A Laboratory Manual, 3rd ed., New York: Cold Spring Harbor Laboratory Press, Academic, 2001.

    Google Scholar 

  17. http://gentle.magnusmanske.de/.

  18. https://www.dnastar.com/.

  19. Kalendar, R., Lee, D., and Schulman, A.H., Genes Genomes Genomics, 2009, vol. 3, pp. 1–14.

    Google Scholar 

  20. Schechter, I., and Berger, A., Biochem. Biophys. Res. Commun., 1967, vol. 20, no. 27/2, pp. 157–162.

  21. Laemli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  Google Scholar 

  22. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  23. Villa, S., De Fazio, G., and Canosi, U., Analytical Biochemistry, 1989, vol. 177, pp. 161–164.

    Article  CAS  Google Scholar 

  24. Tarentino, A.L., in Handbook of Proteolytic Enzymes, 2nd ed., Barret, A.J., Rawlings, N.D., and Woessner, J.F., Eds., London: Elsevier, Academic, 2004.

    Google Scholar 

  25. Bhusan, R., Mahesh, V.K., and Mallikharjun, P.V., Biomed. Chromatogram., 1989, vol. 3, no. 3, pp. 95–104.

    Article  Google Scholar 

  26. Choi, H.J., Seo, M.J., Lee, J.C., Cheigh, C.I., Park, H., Ahn, C., and Pyun, Y.R., J. Microbiol. Biotechnol., 2005, vol. 15, no. 2, pp. 330–336.

    CAS  Google Scholar 

  27. Park, E., Chae, Y.K., Lee, JY., Lee, B., and Kim, Y., J. Microbiol. Biotechnol., 2006, vol. 16, pp. 1429–1433.

    CAS  Google Scholar 

  28. Rao, X., Hu, J., Li, S., Jin, X., Zhang, C., Cong, Y., Hu, X., Tan, Y., Huang, J., Chen, Z., Zhu, J., and Hu, F., Peptides, 2005, vol. 26, no. 5, pp. 721–729.

    Article  CAS  Google Scholar 

  29. Lee, J.H., Minn, I., Park, C.B., and Kim, S.C., Protein Expr. Purif., 1998, vol. 12, pp. 53–60.

    Article  CAS  Google Scholar 

  30. Park, C.J., Lee, J.H., Hong, S.S., Lee, H.S., and Kim, S., Appl. Microbiol. Biotechnol., 1998, vol. 50, pp. 71–76.

    Article  CAS  Google Scholar 

  31. Lee, S.J., Lee, J.H., Jin, H.J., Lee, J.H., Ryu, H.Y., Kim, Y., Kong, I.S., and Kim, K.W., Mol. Cells, 2000, vol. 30, no. 10/2, pp. 236–240.

  32. Wang, F., Song, H., Wang, X., Zhang, W., Wang, B., Zho, J., and Hu, Z.B., Appl. Biochem. Biotechnol., 2012, vol. 166, no. 3, pp. 612–619.

    Article  CAS  Google Scholar 

  33. Jeong, D.W., Shin, D.S., Ahn, C.W., Song, I.S., and Lee, H.J., J. Microbiol. Biotechnol., 2007, vol. 17, no. 6, pp. 952–959.

    CAS  PubMed  Google Scholar 

  34. Shin, J.R., Lim, K.J., Kim, D.J., Cho, J.H., and Kim, S.C., PLoS One, 2013, vol. 8, no. 3. e58997.

    Article  CAS  Google Scholar 

  35. Stahl, E. and Ashworth, M.R.F., Quart. Rev. Biol., 1970, vol. 45, no. 3, pp. 316–317.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Karadeniz Technical University Research Foundation (grant no. 5636), Turkey for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Guler.

Ethics declarations

No conflict of interest is declared. This article does not contain any studies involving animals or human participants performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guler, H.I. Recombinant Production of Opiorphin Pentapeptide as Tandem Multimers Through Rational Design of Primers. Appl Biochem Microbiol 56, 141–148 (2020). https://doi.org/10.1134/S0003683820020167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020167

Keywords:

Navigation