Skip to main content
Log in

Development of ULYSSIS, a Tool for the Biosynthesis of Cyclotides and Cyclic Knottins

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Many human disorders and discomforts can potentially be treated by peptide-based medicines. There are two major problems in using peptide-based medicines: their stability and cost-effective production. Generating cyclic variants of linear peptides is an effective way to improve in vivo stability, if done correctly it is possible to retain native activity. In this paper we describe use of peptide complementation to delay splicing and facilitate purification by affinity tag, through ULYSSIS (Universal Ligation bY a Secondarily Split Intein System), a conditional split intein based peptide cyclisation system. Through ULYSSIS we have generated two proof of concept cyclic peptides, kalata B1 and a cyclic variant of a small natively linear peptide, leconotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Berrade L, Kwon Y, Camarero JA (2010) Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. ChemBioChem 11(10):1368–1372

    Article  CAS  Google Scholar 

  • Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed 50(14):3249–3252

    Article  CAS  Google Scholar 

  • Böcker JK et al (2015) Generation of a genetically encoded, photoactivatable intein for the controlled production of cyclic peptides. Angew Chem Int Ed 54(7):2116–2120

    Article  Google Scholar 

  • Cheriyan M et al (2013) Faster protein splicing with the nostoc punctiforme dnae intein using non-native extein residues. J Biol Chem 288(9):6202–6211

    Article  CAS  Google Scholar 

  • Choi JJ et al (2006) Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite nanoarchaeum equitans. J Mol Biol 356(5):1093–1106

    Article  CAS  Google Scholar 

  • Ciragan A, et al (2020) NMR structure and dynamics of TonB investigated by scar-less segmental isotopic labeling using a salt-inducible split intein. Front Chem 8(136).

  • Clark RJ et al (2005) Engineering stable peptide toxins by means of backbone cyclization: stabilization of the -conotoxin MII. Proc Natl Acad Sci 102(39):13767–13772

    Article  CAS  Google Scholar 

  • Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43(20):5965–5975

    Article  CAS  Google Scholar 

  • Craik DJ, Du J (2017) Cyclotides as drug design scaffolds. Curr Opin Chem Biol 38:8–16

    Article  CAS  Google Scholar 

  • Craik DJ et al (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif1 1Edited by P. E. Wright. J Mol Biol 294(5):1327–1336

    Article  CAS  Google Scholar 

  • de Veer SJ, Kan M-W, Craik DJ (2019) Cyclotides: from structure to function. Chem Rev 119(24):12375–12421

    Article  Google Scholar 

  • Di Ventura B, Mootz HD (2019) Switchable inteins for conditional protein splicing. Biol Chem 400(4):467–475

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  Google Scholar 

  • Gao S, Yao X, Yan N (2021) Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 596(7870):143–147

    Article  CAS  Google Scholar 

  • Garcia E, Camarero JA (2010) Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Curr Mol Pharmacol 3(3):153–163

    Article  CAS  Google Scholar 

  • Gorbalenya AE (1998) Non-canonical inteins. Nucleic Acids Res 26(7):1741–1748

    Article  CAS  Google Scholar 

  • Gran L (1973) On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol (copenh) 33(5):400–408

    CAS  Google Scholar 

  • Gran L, Sandberg F, Sletten K (2000) Oldenlandia affinis (R&S) DC: a plant containing uteroactive peptides used in African traditional medicine. J Ethnopharmacol 70(3):197–203

    Article  CAS  Google Scholar 

  • Handley TNG et al (2020a) Cyclotide structures revealed by NMR, with a little help from x-ray crystallography. ChemBioChem 21(24):3463–3475

    Article  CAS  Google Scholar 

  • Handley TNG et al (2020b) Engineered biosynthesis of cyclotides. NZ J Bot 58(4):358–377

    Article  Google Scholar 

  • Harris KS et al (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 6(1):10199

    Article  CAS  Google Scholar 

  • Heitz A et al (2008) Knottin cyclization: impact on structure and dynamics. BMC Struct Biol 8(1):54

    Article  Google Scholar 

  • Iwai H et al (2006) Highly efficient proteintrans-splicing by a naturally split DnaE intein fromNostoc punctiforme. FEBS Lett 580(7):1853–1858

    Article  CAS  Google Scholar 

  • Koehbach J et al (2013) Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. Proc Natl Acad Sci USA 110(52):21183–21188

    Article  CAS  Google Scholar 

  • Lee AC-L et al (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20(10):2383

    Article  Google Scholar 

  • Lindley D (2021) Short‐term outcomes of a high‐volume, low‐concentration bolus starting dose technique with ziconotide: a case series. Neuromodulation: Technology at the Neural Interface

  • McGivern JG (2007) Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat 3(1):69–85

    Article  CAS  Google Scholar 

  • Moore SJ, Leung CL, Cochran JR (2012) Knottins: disulfide-bonded therapeutic and diagnostic peptides. Drug Discov Today Technol 9(1):e3–e11

    Article  CAS  Google Scholar 

  • Muratspahić E et al (2020) Harnessing cyclotides to design and develop novel peptide GPCR ligands. RSC Chem Biol 1(4):177–191

    Article  Google Scholar 

  • Perler FB et al (1994) Protein splicing elements: inteins and exteins–a definition of terms and recommended nomenclature. Nucleic Acids Res 22(7):1125–1127

    Article  CAS  Google Scholar 

  • Postic G et al (2018) KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res 46(D1):D454–D458

    Article  CAS  Google Scholar 

  • Rosengren KJ et al (2003) Twists, knots, and rings in proteins. J Biol Chem 278(10):8606–8616

    Article  CAS  Google Scholar 

  • Scott CP et al (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci 96(24):13638–13643

    Article  CAS  Google Scholar 

  • Shafee T, Harris K, Anderson M (2015) Chapter eight—biosynthesis of cyclotides. In: Craik DJ (ed) Advances in botanical research. Academic Press, New York, pp 227–269

    Google Scholar 

  • Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5(2):446–461

    Article  CAS  Google Scholar 

  • Smith MT, et al (2002) The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. PAIN 96(1).

  • Tavassoli A (2017) SICLOPPS cyclic peptide libraries in drug discovery. Curr Opin Chem Biol 38:30–35

    Article  CAS  Google Scholar 

  • Tavassoli A, Benkovic SJ (2007) Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat. Protocols 2(5):1126–1133

    Article  CAS  Google Scholar 

  • Tyszkiewicz AB, Muir TW (2008) Activation of protein splicing with light in yeast. Nat Methods 5(4):303–305

    Article  CAS  Google Scholar 

  • Vila-Perelló M et al (2008) Activation of protein splicing by protease- or light-triggered O to N Acyl migration. Angew Chem Int Ed 47(40):7764–7767

    Article  Google Scholar 

  • Wong S, Mosabbir AA (2015) Truong K (2015) An engineered split intein for photoactivated protein trans-splicing. PLoS ONE 10(8):e0135965

    Article  Google Scholar 

  • Wright CE et al (2000) Cardiovascular and autonomic effects of ω-conotoxins MVIIA and CVID in conscious rabbits and isolated tissue assays. Br J Pharmacol 131(7):1325–1336

    Article  CAS  Google Scholar 

  • Wu H, Hu Z, Liu X-Q (1998) Proteintrans-splicing by a split intein encoded in a split DnaE gene ofSynechocystissp. PCC6803. Proce Natl Acad Sci 95(16):9226–9231

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by The Bill and Melinda Gates Foundation, Seattle, WA.

Author information

Authors and Affiliations

Authors

Contributions

TNGH: Investigation, validation, conceptualisation, and writing. TK: formal analysis. MIB: Supervision, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Thomas N. G. Handley.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handley, T.N.G., Kleffmann, T. & Butler, M.I. Development of ULYSSIS, a Tool for the Biosynthesis of Cyclotides and Cyclic Knottins. Int J Pept Res Ther 28, 21 (2022). https://doi.org/10.1007/s10989-021-10336-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-021-10336-3

Keywords

Navigation