Skip to main content
Log in

Optimization of Microbial Synthesis of Silver Sulfide Nanoparticles

  • BIOLOGICAL PREPARATION TECHNOLOGY
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The method for the biosynthesis of silver sulfide nanoparticles using a strain of Shewanella oneidensis MR-1 in an aqueous solution of silver nitrate and sodium thiosulfate salts has been optimized. Optimization is associated with the biosynthesis of nanoparticles directly in the culture medium in the presence of live cells, which increases the nanoparticle yield by 15–20% and significantly shortens the entire process of obtaining nanoparticles. It was also shown that an increase in the concentration of sodium thiosulfate and silver nitrate salts from 1 mM to 10 mM increases the nanoparticle concentration in the reaction solution, whereas the nanoparticle yield in terms of the silver introduced in the reaction decreases. The nanoparticles obtained by the optimized and the conventional methods do not differ in shape, size, and chemical composition. It was shown that the efficiency of nanoparticle biosynthesis depends on the composition of the liquid nutrient medium for S. oneidensis MR-1 cell growth. Cell culturing in nutrient medium for over 24 h fails to intensify the biosynthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ghashghaei, S. and Emtiazi, G., The methods of nanoparticle synthesis using bacteria as biological nanofactories, their mechanisms and major applications, Curr. Bionanotechnol., 2016, vol. 1, no. 1, pp. 3–17. doi 10.2174/2213529401999140310104655

    Article  Google Scholar 

  2. Iravani, S., Bacteria in nanoparticle synthesis: current status and future prospects, Int. Scholarly Res. Not., 2014. PMCID: PMC4897565 doi 10.1155/2014/359316

  3. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, Oxford: Oxford Univ. Press, 1998, pp. 1–30.

    Google Scholar 

  4. Raveendran, P., Fu, J., and Wallen, S.L., Completely “green” synthesis and stabilization of metal nanoparticles, J. Am. Chem. Soc., 2003, vol. 125, no. 46, pp. 13 940–13 941.

    Article  CAS  Google Scholar 

  5. Narayanan, K.B. and Sakthivel, N., Biological synthesis of metal nanoparticles by microbes, Adv. Colloid Interface Sci., 2010, vol. 153, pp. 1–13.

    Article  CAS  Google Scholar 

  6. Singh, P., Kim, Y.J., Zhang, D., and Yang, D.C., Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol., 2016, vol. 34, no. 7, pp. 588–99. doi 10.1016/j.tibtech.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Rauwel, P., Kuunal, S., Ferdov, S., and Rauwel, E., Review on the green synthesis of silver nanoparticles and their morphologies studied via TEM, Adv. Mat. Sci. Eng., 2015, vol. 2015, no. 2015, pp. 1–9. doi 10.1155/2015/682749

  8. Holmes, J.D., Smith, P.R., Evans-Gowing, R., et al., Energy dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes, Arch. Microbiol., 1995, vol. 163, no. 2, pp. 143–147. doi 10.1007/BF00381789

    Article  CAS  PubMed  Google Scholar 

  9. Sweeney, R.Y., Mao, C., and Gao, X., Bacterial biosynthesis of cadmium sulfide nanocrystals, Chem. Biol., 2004, vol. 11, no. 11, pp. 1553–1559. doi 10.1016/j.chembiol.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  10. Korbekandia, H., Asharia, Z., Iravani, S., and Abbasic, S., Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum, Iran. J. Pharmac. Res., 2013, vol. 12, no. 13, pp. 289–298.

    Google Scholar 

  11. Tsukiyama, T., Tachimi, T., Saitoh, N., et al., Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae, Electrochim. Acta, 2007, vol. 53, no. 1, pp. 186–192. doi 10.1016/j.electacta.2007.02

    Article  CAS  Google Scholar 

  12. He, S., Guo, Z., Zhang, Y., Zhang, S., et al., Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate, Mat. Lett., 2007, vol. 61, no. 18, pp. 3984–3987. doi 10.1016/j.matlet.2007.01.018

    Article  CAS  Google Scholar 

  13. Deplanche, K. and Macaskie, L.E., Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans, Biotechnol. Bioeng., 2008, vol. 99, no. 5, pp. 1055–1064. doi 10.1002/bit.21688

    Article  CAS  PubMed  Google Scholar 

  14. Saifuddin, N.,Wong, C.W., and Yasumira, A.A.N., Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation, E-J. Chem., 2009, vol. 6, no. 1, pp. 61–70. doi 10.1155/2009/734264

    Article  CAS  Google Scholar 

  15. Voeikova, T.A., Shabanova, A.S., Ivanov, Yu.D., et al., The role of proteins of the outer membrane of Shewanella oneidensis MR-1 in the formation and stabilization of silver sulfide nanoparticles, Appl. Biochem. Microbiol., 2016, vol. 52, no. 8, pp. 769–775.

    Article  CAS  Google Scholar 

  16. Suresh, A.K., Doktycz, M.J., Wang, W., Moon, Ji-W., et al., Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using g-proteobacterium Shewanella oneidensis, Acta Biomater., 2011, vol. 7, pp. 4253–4258.

    Article  CAS  PubMed  Google Scholar 

  17. Chun, K.N., Krishnakumar, S., Xin, L., et al., Influence of outer membrane C-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis, Biotechnol. Bioeng., 2013, vol. 110, pp. 1831–1837.

    Article  CAS  Google Scholar 

  18. Li, X., Xu, H., Chen, Z.-S., and Chen, G., Biosynthesis of nanoparticles by microorganisms and their applications, J. Nanomater., 2011, vol. 2011, pp. 1–16. Article ID 270974

  19. Kulkarni, N. and Muddapur, U., Biosynthesis of metal nanoparticles: a review, J. Nanotechnol., 2014, vol. 2014, pp. 1–8. Article ID 510246. doi 10.1155/2014/510246

  20. Burns, J.L. and DiChristina, T.J., Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enteric serovar typhimurium LT2. 1, Appl. Environ. Microbiol., 2009, vol. 75, no. 16, pp. 5209–5217. doi 10.1128/AEM.00888-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ripan, R. and Chetyanu, I., Neorganicheskaya khimiya. Khimiya metallov (Inorganic Chemistry. Metal Chemistry), Moscow: Mir, 1972, vol. 2, pp. 3–871.

    Google Scholar 

  22. Debabov, V.G., Voeikova, T.A., Shebanova, A.S., et al., Bacterial synthesis of silver sulfide nanoparticles, Ross. Nanotekhnol., 2013, vol. 8, nos. 3–4, pp. 269–276.

  23. Shebanova, A.S., Voeikova, T.A., Egorov, A.V., et al., Study of some aspects of the mechanism of bacterial synthesis of silver sulfide nanoparticles by metal-reducing bacteria Shewanella oneidensis MR-1, Biophysics (Moscow), 2014, vol. 59. 408—414.

    Article  CAS  Google Scholar 

  24. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the Russian Fund for Basic Research, project no. 16-04-00471. The electron microscopy assays were supported by the Program of Presidium of Russian Academy of Sciences (no. 24). The analytical studies were performed with the equipment of the Center of Collective Use, Lomonosov Moscow State University, with the financial support of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Voeikova or V. G. Debabov.

Additional information

Translated by V. Kudrinskaya

Abbreviations: IR—infrared; CL—culture liquid, OD—optical density, TEM—transmission electron microscopy; LB medium—Luria–Bertani medium; MM—molecular mass standards; UV—ultraviolet; EDS—energy dispersive X-ray spectroscopy; and TSB—Tripton Soya Broth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voeikova, T.A., Zhuravliova, O.A., Gracheva, T.S. et al. Optimization of Microbial Synthesis of Silver Sulfide Nanoparticles. Appl Biochem Microbiol 54, 800–807 (2018). https://doi.org/10.1134/S0003683818080070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818080070

Keywords:

Navigation