Skip to main content
Log in

Vanillin Resistance Induced by BssS Overexpression in Escherichia coli

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Overexpression of the BssS gene, a biofilm formation regulator, in planktonic Escherichia coli cells has been shown to confer the vanillin-resistant phenotype Vanr to the bacteria. The MG1655PL-tac-bssS strain started growing in liquid aerated LB medium with 2 g/L vanillin after a lag phase of 17 ± 2 h, whereas the original MG1655 strain did not grow under these conditions. The role of aldehyde reductase YqhD, a vanillin- degrading enzyme, in Vanr phenotype formation has been assessed. However, the Vanr trait in the MG1655PL-tac-bssS strain primarily depended on autoinducer-2 (AI-2), which formed in E. coli cells with an intact luxS gene. We supposed that BssS acts together with autoinducer-2 (which presumably accumulated during the prolonged lag phase) to induce vanillin resistance determined by changes in the expression of a range of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boonchird, C. and Flegel, T.W., Can. J. Microbiol., 1982, vol. 28, no. 11, pp. 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  2. Fitzgerald, D.J., Stratford, M., Gasson, M.J., Ueckert, J., Bos, A., and Narbad, A., J. Appl. Microbiol., 2004, vol. 97, no. 1, pp. 104–113.

    Article  CAS  PubMed  Google Scholar 

  3. Zaldivar, J., Martinez, A., and Ingram, L.O., Biotechnol. Bioeng., 1999, vol. 65, no. 1, pp. 24–33.

    Article  CAS  PubMed  Google Scholar 

  4. Pereira, F.B., Gumaraes, P.M., Gomes, D.G., Mira, N.P., Teixira, M.C., Sa-Correia, I., and Domingues, L., Biotechnol. Biofuels, 2011, vol. 4. doi 10.1186/1754-6834-4-57

  5. Heravi, K.M., Lange, J., Watzlawick, H., Kalinowski, J., and Altenbuchner, J., J. Bacteriol., 2015, vol. 197, no. 5, pp. 959–972.

    Article  Google Scholar 

  6. Hansen, E.H., Moller, B.L., Kock, G.R., Bunner, C.M., Kristensen, C., Jensen, O.R., Okkels, F.T., Olsen, C.E., Motawia, M.S., and Hansen, J., Appl. Environ. Microbiol., 2009, vol. 75, no. 9, pp. 2765–2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alper, H. and Stephanopoulos, G., Metab. Eng, 2007, vol. 9, no. 3, pp. 258–267.

    Article  CAS  PubMed  Google Scholar 

  8. O'Toole, G.A. and Stewart, P.S., Nat. Biotechnol., 2005, vol. 23, no. 11, pp. 1378–1379.

    Article  PubMed  Google Scholar 

  9. Domka, J., Lee, J., and Wood, T.K., Appl. Environ. Microbiol., 2006, vol. 72, no. 4, pp. 2449–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. RF Patent no. 2501858 S2, 2010.

  11. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okimura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H., Mol. Syst. Biol., 2006, vol. 2, no. 1. doi 10.1038/msb4100050

    Google Scholar 

  12. Wilson, G.G., Young, K.K., Edlin, G.J., and Konigsberg, W., Nature, 1979, vol. 280, no. 5717, pp. 80–82.

    Article  CAS  PubMed  Google Scholar 

  13. Molecular Cloning: A Laboratory Manual, 3rd ed., Sambrook, J. and Russell, D.W., Eds., New York: Cold Spring Harbor Lab. Press, 2001.

  14. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  15. Salis, H.M., Mirsky, E.A., and Voigt, C.A., Nat. Biotechnol., 2009, vol. 27, no. 10, pp. 946–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borujeni, A.E., Channarasappa, A.S., and Salis, H.M., Nucleic Acids Res., 2013, vol. 42, no. 4, pp. 2646–2659.

    Article  Google Scholar 

  17. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O., Int. J. Antimicrob. Agents, 2010, vol. 35, no. 4, pp. 322–332.

    Article  PubMed  Google Scholar 

  18. Spillman, P.J., Pollnitz, A.P., Liacopoulos, D., Pardon, K.H., and Sefton, M.A., J. Agric. Food Chem., 1998, vol. 46, pp. 2.

    Article  Google Scholar 

  19. Kunjapur, M.A., Tarasova, Y., and Prather, K.L.J., J. Am. Chem. Soc., 2014, vol. 136, p. 11644.

    Article  CAS  PubMed  Google Scholar 

  20. Keseler, I.M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martinez, C., Caspi, R., Fulcher, C., Gama-Castro, S., Kothari, A., Krummenacker, M., and Latendresse, M., Nucleic Acids Res., 2017, vol. 45. doi 10.1093/nar/gkq1143

  21. Turner, P.C., Miller, E.N., Jarboe, L.R., Baggett, C.L., Shanmugam, K.T., and Ingram, L.O., J. Ind. Microbiol. Biotechnol., 2011, vol. 38, no. 3, pp. 431–439.

    Article  CAS  PubMed  Google Scholar 

  22. Walters, M. and Sperandio, V., Int. J. Med. Microbiol., 2006, vol. 296, nos. 2–3, pp. 125–131.

    Article  CAS  PubMed  Google Scholar 

  23. Xue, T., Zhao, L., Sun, H., Zhou, X., and Sun, B., Cell Res., 2009, vol. 19, no. 11, pp. 1258–1268.

    Article  CAS  PubMed  Google Scholar 

  24. DeLisa, M.P., Wu, C.F., Wang, L., Valdes, J.J., and Bentley, W.E., J. Bacteriol., 2001, vol. 183, no. 18, pp. 5239–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ovsienko.

Additional information

Original Russian Text © M.V. Ovsienko, E.N. Fedorova, V.G. Doroshenko, 2018, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2018, Vol. 54, No. 1, pp. 26–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsienko, M.V., Fedorova, E.N. & Doroshenko, V.G. Vanillin Resistance Induced by BssS Overexpression in Escherichia coli. Appl Biochem Microbiol 54, 21–25 (2018). https://doi.org/10.1134/S0003683818010088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818010088

Keywords

Navigation