Skip to main content
Log in

Biofilms of nitrile-hydrolyzing bacteria: Dynamics of growth, resistance to toxic substances, and biotechnological potential

  • Producers, Biology, Selection, and Gene Engineering
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Monospecies and mixed bacterial biofilms of Rhodococcus ruber gt1, Pseudomonas fluorescens C2, Alcaligenes faecalis 2, and Rh. erythropolis 11-2 were obtained during growth in presence of the carriers. The transformation of aliphatic and aromatic nitriles by the biofilms of nitrile-hydrolyzing bacteria, as well as the growth dynamics of Rh. ruber gt1 and P. fluorescens C2 biofilms and their resistance to toxic substrates and products of nitrile hydrolysis, were studied. It was shown that the P. fluorescens C2 biofilm mass and total ATP content reached the maxima after 1 day of growth, whereas Rh. ruber gt1 reached them after 3–4 days of cultivation. The biofilms of Rh. ruber gt1 and P. fluorescens C2 were more resistant to the effects of high concentrations of acrylamide and acrylonitrile and had a greater adaptive capacity than planktonic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high-performance liquid chromatography

DMSO:

dimethyl sulfoxide

CFU:

colony-forming units

OD:

optical density

LB medium:

Luria–Bertani medium

References

  1. Monds, R.D. and G.A. O’Toole, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol., 2008, vol. 17, no. 2, pp. 73–87.

    Article  Google Scholar 

  2. Jain, A. and A. Agarwal, Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci, J. Microbiol. Methods, 2009, vol. 76, pp. 88–92.

    Article  CAS  PubMed  Google Scholar 

  3. Izano, E.A., Shah, S.M., and Kaplan, J.B., Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms, Microbial Pathogenesis, 2009, vol. 46, pp. 207–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gross, R., Hauer, B., Otto, K., and Schmid, A., Microbial biofilms: new catalysts for maximizing productivity of long-term biotransformations, Biotechnol. Bioeng., 2007, vol. 98, pp. 1123–1134.

    Article  CAS  PubMed  Google Scholar 

  5. Rosche, B., Li, X.Z., Hauer, B., Schmid, A., and Buehler, K., Microbial biofilms: a concept for industrial catalysis?, Trends Biotechnol., 2009, vol. 27, no. 11, pp. 636–643.

    Article  CAS  PubMed  Google Scholar 

  6. Halan, B., Buehler, K., and Schmid, A., Trends Biotechnol., 2012, vol. 30, no. 9, pp. 453–465.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi, M., Kobayashi, M., Nagasawa, T., and Yamada, H., Enzymatic synthesis of acrylamide: a success story not yet over, Trends Biotechnol., 1992, vol. 10, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee, A., Sharma, R., and Banerjee, U.C., The nitrile-degrading enzymes: current status and future prospects, Appl. Microbiol. Biotechnol., 2002, vol. 60, pp. 33–44.

    Article  CAS  PubMed  Google Scholar 

  9. Mylerova, V. and Martinkova, L., Synthetic applications of nitrile-converting enzymes, Curr. Org. Chem, 2003, vol. 7, pp. 1–17.

    Google Scholar 

  10. Debabov, V.G. and Yanenko, A.S., Biocatalytic hydrolysis of nitriles, Obzor. Zh. Khim., 2011, vol. 1, no. 4, pp. 376–394.

    Google Scholar 

  11. Hann, E.C., Eisenberg, A., Fager, S.K., Perkins, N.E., Gallagher, F.G., Cooper, S.M., Gavagan, J.E., Stieglitz, B., Hennessey, S.M., and Dicosimo, R., 5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23, Bioorg. Med. Chem., 1999, vol. 7, pp. 2239–2245.

    Article  CAS  PubMed  Google Scholar 

  12. Graham, D., Pereira, R., Barfield, D., and Cowan, D., Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp., Enzyme Microb. Technol., 2000, vol. 26, pp. 368–373.

    Article  CAS  PubMed  Google Scholar 

  13. Dias, J.C.T., Rezende, R.P., and Linardi, V.R., Bioconversion of nitriles by Candida guilliermondii CCT 7207 cells immobilized in barium alginate Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 757–761.

    Article  CAS  PubMed  Google Scholar 

  14. Dias, J.C.T., Rezende, R.P., and Linardi, V.R., Biodegradation of ace to nitrile by cells of Candida guilliermondii UFMG-Y65 immobilized in alginate,-carrageenan and citric pectin, Braz. J. Microb., 2001, vol. 31, pp. 61–66.

    Article  Google Scholar 

  15. Colby, J., Snell, D., and Black, G.W., Immobilization of Rhodococcus AJ270 and use of entrapped biocatalyst for the production of acrylic acid, Monatshefte für Chemie, 2000, vol. 131, pp. 655–666.

    Article  CAS  Google Scholar 

  16. Bauer, A., Layh, N., Syldatk, C., and Willetts, A., Polyvinyl alcohol-immobilized whole-cell preparations for the biotransformation of nitriles, Biotechnol. Lett., 1996, vol. 18, pp. 343–348.

    Article  CAS  Google Scholar 

  17. Chen, J., Zheng, Y.-G., and Shen, Y.-C., Biosynthesis of p-methoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063, Pichia stipitis, Proc. Biochem., 2008, vol. 43, pp. 978–983.

    Article  CAS  Google Scholar 

  18. Maksimov, A.Yu., Maksimova, Yu.G., M.V. Kuznetsova, V.F. Olontsev, V.A. Demakov, Immobilization of Rhodococcus rubber strain GT1, possessing nitrile hydratase activity, on carbon supports, Appl. Biochem. Microbiol., 2007, vol. 43, no. 2, pp. 173–177.

    Article  CAS  Google Scholar 

  19. Maksimova, Yu.G., Maksimov, A.Yu., Demakov, V.A., Kozlov, S.V., Ovechkina, G.V., and Olontsev, V.F., Hydrolysis of acrylonitrile by nitrile-converting bacterial cells immobilized on fibrous carbon adsorbents, Appl. Biochem. Microbiol., 2011, vol. 47, no. 7, pp. 681–687.

    Article  CAS  Google Scholar 

  20. Peeters, E., Nelis, H.J., and Coenye, T., Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, J. Microbiol. Methods, 2008, vol. 72, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  21. Reisner, A., Krogfelt, K.A., Klein, B.M., Zechner, E.L., and Molin, S., In vitro biofilm formation of commensal and pathogenic Escherichia coli, J. Bacteriol., 2006, vol. 188, no. 10, pp. 3572–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toole, G.A., Microtiter dish biofilm formation assay, J. Vis. Exp., 2011, vol. 47, p. 2437.

    Google Scholar 

  23. Ludwicka, A., Switalski, L.M., Lundin, A., Pulverer, G., and Wadstrom, T., Bioluminescent assay for measurement of bacterial attachment to polyethylene, J. Microbiol. Methods, 1985, vol. 4, pp. 169–177.

    Article  CAS  Google Scholar 

  24. Efremenko, E.N., Azizov, R.E., Raeva, A.A., Abbasov, V.M., and Varfolomeyev, S.D., An approach to the rapid control of oil spill bioremediation by bioluminescent method of intracellular ATP determination, Int. Biodeterior. Biodeg., 2005, vol. 56, pp. 94–100.

    Article  CAS  Google Scholar 

  25. Andrews, C.S., Denyer, S.P., Hall, B., Hanlon, G.W., and Lloyd, A.W., A comparison of the use of an ATPbased bioluminescent assay and image analysis for the assessment of bacterial adhesion to standard HEMA and biomimetic soft contact lenses, Biomaterials, 2001, vol. 22, pp. 3225–3233.

    Article  CAS  PubMed  Google Scholar 

  26. Lehocky, M., Stahel, P., Koutny, M., Cech, J., Institoris, J., and Mracek, A., Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared teflon-like and organosilicon surfaces, J. Materials Proc. Technol., 2009, vol. 209, pp. 2871–2875.

    Article  CAS  Google Scholar 

  27. Bos, R., van der Mei, H.C., Gold, J., and Busscher, H.J., Retention of bacteria on a substratum surface with micro-patterned hydrophobicity, FEMS Microbiol. Letts., 2000, vol. 189, pp. 311–315.

    Article  CAS  Google Scholar 

  28. Kohyama, E., Yoshimura, A., Aoshima, D., Yoshida, T., Kawamoto, H., and Nagasawa, T., Convenient treatment of acetonitrile-containing wastes using the tandem combination of nitrile hydratase and amidase-producing microorganisms, Appl. Microbiol. Biotechnol., 2006, vol. 72, no. 3, pp. 600–606.

    Article  CAS  PubMed  Google Scholar 

  29. Tkachenko, A.G., Pshenichnov, M.R., Salakhetdinova, O.Ya., and Nesterova, L.Yu., The role of putrescine and potassium transport in the regulation of DNA topology during Escherichia coli adaptation to heat stress, Microbiology (Moscow), 1998, vol. 67, no. 5, pp. 494–498.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Maksimova.

Additional information

Original Russian Text © Yu.G. Maksimova, A.Yu. Maksimov, V.A. Demakov, 2015, published in Biotekhnologiya, 2015, No. 4, pp. 39–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, Y.G., Maksimov, A.Y. & Demakov, V.A. Biofilms of nitrile-hydrolyzing bacteria: Dynamics of growth, resistance to toxic substances, and biotechnological potential. Appl Biochem Microbiol 52, 739–749 (2016). https://doi.org/10.1134/S0003683816080068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683816080068

Keywords

Navigation