Skip to main content
Log in

Influence of NaCl on photosynthesis and nitrogen metabolism of cyanobacterium Nostoc calcicola

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Nostoc calcicola, a halotolerant alkaliphilic, nitrogen-fixing cyanobacterium, was grown under various NaCl concentrations (from 500 to 2000 mM) at alkaline pH. In cyanobacteria, physiological and biochemical responses were correlated with the external salt stress. The optimal condition for cell growth of N. calcicola isolated from alkaline ‘Usar’ soils of northern India was 500 mM NaCl at pH 10.5, accompanied with an increase in photosynthetic O2 evolution, carbohydrate content and activities of nitrate reductase, glutamine synthetase, photosystem I and photosystem II. Under salt stress conditions above 500 mM NaCl, cell growth and carbohydrate contents reduced. The results indicate that production of carbohydrates under salinity stress at alkaline pH acts as major mechanism of salt tolerance in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tandeau de Marsac, N. and Houmard, J., FEMS Microbiol. Rev., 1993, vol. 10, no. 1–2, pp. 119–190.

    Article  Google Scholar 

  2. Kirrolia, A., Bishnoi, N.R., and Singh, N., J. Algal Biomass Utln., 2011, vol. 2, no. 4, pp. 28–34.

    Google Scholar 

  3. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J., Ann. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 463–499.

    Article  CAS  Google Scholar 

  4. Klähn, S. and Hagemann, M., 2011, vol. 13, no. 3, pp. 551–562.

  5. The Ecology of Cyanobacteria: Their Diversity in Time and Space, Whitton, B.A., and Potts, M., Eds., Dordrecht: Kluwer Academic Publishers, 2000, pp. 281–306.

  6. Srivastava, A.K., Bhargava, P., Thapar, R., and Rai, L.C., Environ. Exp. Bot., 2008, vol. 64, no. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  7. Bhargava, P., Mishra, Y., Srivastava, A.K., Narayan, O.P., and Rai, L.C., Photosynth. Res., 2008, vol. 96, no. 1, pp. 61–74.

    Article  CAS  PubMed  Google Scholar 

  8. Ferjani, A., Mustardy, L., Sulpice, R., Marin, K., Suzuki, I., Hagemann, M., and Murata, N., Plant Physiol., 2003, vol. 131, no. 4, pp.1628–1637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Xu, Yu, Guerra, L.T., Li, Z., Ludwig, M., Dismukes, G.C., and Bryant, D.A., Metabol. Eng., 2013, vol. 16, no. 3, pp. 56–67.

    Article  CAS  Google Scholar 

  10. Ducat, D.C., Avelar–Rivas, J.A., Way, J.C., and Silver, P., Appl. Environ. Microbiol., 2012, vol. 78, no. 8, pp. 2660–2668.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Molitor, V., Erber, W., and Peschek, G.A., FEBS Lett., 1986, vol. 204, no. 2, pp. 251–256.

    Article  CAS  Google Scholar 

  12. Sudhir, P.R., Pogoryelov, D., Kovacs, L., Garab, G., and Murthy, S.D.S., J. Biochem. Mol. Biol., 2005, vol. 38, no. 4, pp. 481–485.

    Article  CAS  PubMed  Google Scholar 

  13. Thapar, R., Srivastava, A.K., Bhargava, P., Mishra, Y., and Rai, L.C., J. Plant Physiol., 2008, vol. 165, no. 3, pp. 306–316.

    Article  CAS  PubMed  Google Scholar 

  14. Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., and Murata, N., Plant Physiol., 2000, vol. 123, no. 3, pp. 1047–1056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jeanjean, R., Matthijis, H.C.P., Onana, B., Havaux, M., and Joset, F., Plant Cell Physiol., 1993, vol. 34, no. 7, pp. 1073–1079.

    CAS  Google Scholar 

  16. Paula, D., Eduardo, F., and Graciela, L.S., Plant Physiol. Biochem., 2005, vol. 43, no. 2, pp. 133–138.

    Article  Google Scholar 

  17. Singh, R.N., Nature, 1950, vol. 165, pp. 325–326.

    Article  Google Scholar 

  18. Allen, M.B., and Arnon, D.I., Plant Physiol., 1955, vol. 30, no. 4, pp. 366–372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Myers, J. and Kratz, W.A., J. Gen. Physiol., 1955, vol. 39, no. 1, pp. 11–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Anal. Chem., 1956, vol. 28, no. 3, pp. 350–356.

    Article  CAS  Google Scholar 

  21. Manzano, C., Candau, P., Gomez–Moreno, C., Relimpio, A.M., and Losada, M., Mol. Cell Biochem., 1976, vol. 10, no. 3, pp. 161–169.

    Article  CAS  PubMed  Google Scholar 

  22. Shapiro, B.M. and Stadtman, E.R., Annu. Rev. Microbiol., 1970, vol. 24, pp. 501–524.

    Article  CAS  PubMed  Google Scholar 

  23. Mallick, N. and Rai, L.C., World J. Microbiol. Biotechnol., 1993, vol. 9, no.2, pp. 196–201.

    Article  CAS  PubMed  Google Scholar 

  24. Rai, L.C. and Raizada, M., J. Gen. Appl. Microbiol., 1985, vol. 31, no. 4, pp. 329–337.

    Article  CAS  Google Scholar 

  25. Handbook of Phycological Methods: Phycological and Biochemical Methods, Hellebust, J.A. and Craigie, J.S., Eds., UK: Cambridge University Press, 1978, pp. 305–315.

  26. Munns, R., Plant Cell Environ.,., 2002, vol. 25, no. 2, pp. 239–250.

    Article  CAS  Google Scholar 

  27. Altamirano, M., Flores–Moya, A., and Figueroa, F.L., Bot. Mar., 2000, vol. 43, no. 2, pp. 119–126.

    Article  Google Scholar 

  28. Moradi, M. and Ismail, A.M., Ann. Bot., 2007, vol. 99, no. 6, pp. 1161–1173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. The Cyanobacteria, Fay, P. and Van Baalen, C., Eds., Amsterdam: Elsevier Science Publishers BV, 1987, pp. 163–186.

  30. Herrero, A., Flores, E., and Guerrero, M.G., FEMS Microbiol. Lett., 1985, vol. 25, no. 1, pp. 21–25.

    Article  Google Scholar 

  31. Marin, K., Kanesaki, Y., Los, D.A., Murata, N., Suzuki, I., and Hagemann, M., Plant Physiol., 2004, vol. 136, no. 2, pp. 3290–3300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lu, C. and Vonshak, A., Plant Physiol., 2002, vol. 114, no. 3, pp. 405–413.

    Article  CAS  Google Scholar 

  33. Renger, G., Volker, M., Eckert, H.J., Fromme, R., Hohm-Veit, S., and Graber, P., Photochem. Photobiol., 1989, vol. 49, no. 1, pp. 97–105.

    Article  CAS  Google Scholar 

  34. Tripathi, A.K., Nagarajan, T., Verma, S.C., and Le Rudulier, D., Curr. Microbiol., 2002, vol. 44, no. 5, pp. 363–367.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Singh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Pandey, K.D., Mesapogu, S. et al. Influence of NaCl on photosynthesis and nitrogen metabolism of cyanobacterium Nostoc calcicola . Appl Biochem Microbiol 51, 720–725 (2015). https://doi.org/10.1134/S0003683815060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815060149

Keywords

Navigation