Skip to main content
Log in

Redox status of extremophilic yeast Yarrowia lipolytica during adaptation to pH-stress

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

In this study we investigated the activities of antioxidant enzymes (superoxide dismutases (SODs) and catalases (CATs)) and the ROS level in cells of Yarrowia lipolytica yeasts grown in a medium with different pH values (4.5, 5.5 and 9.0). It was shown that an increase in the cellular ROS level took place under both acid and alkaline conditions. The growth under extreme conditions was accompanied by a significant increase of SOD activity (by 2.5 times in the acid medium and by 4 times in the alkaline medium), but catalase activity did not change. A study of the electrophoretic profile of catalases showed the presence of three isoforms differing in inhibitor resistance. The electrophoretic profiles of SODs and their inhibitory analysis revealed there are two other isoforms, probably of mitochondrial origin, in addition to Cu and Zn SOD. The role of SOD in pH-adaptation of extremophilic Y lipolytica yeasts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coelho, M.A.Z., Amaral, P.F.F., and Belo, I., Yarrowia lipolytica: An Industrial Workhorse, Mendes-Vilas, A., Ed., Bandajos: Formatex RC, 2010, pp. 930–944.

  2. Harzevili, F.D., Biotechnological applications of the yeast Yarrowia lipolytica, Springer Briefs in Microbiology, 2014.

    Book  Google Scholar 

  3. Huang, G., Virulence, 2012, vol. 3, no. 3, pp. 251–261.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nicaud, J.M., Yeast, 2012, vol. 29, pp. 409–418.

    Article  CAS  PubMed  Google Scholar 

  5. Barth, G. and Gaillardin, C., Yarrowia lipolytica, Wolf, K., Ed., Berlin-Heidelberg: Springer-Verlag, 1996, pp. 313–388.

  6. Lambert, M., Blanchin-Roland, S., Le Louedec, F., Lepingle, A., and Gaillardin, C., Mol Cell. Biol., 1997, vol. 17, no. 7, pp. 3966–3976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zvyagilskaya, R., Parchomenko, O., and Persson, B.L., IUBMB Life, 2000, vol. 50, no. 2, pp. 151–155.

    Article  CAS  PubMed  Google Scholar 

  8. Yuzbashev, T.V., Yuzbasheva, E.Y., Sobolevskaya, T.I., Laptev, I.A., Vybornaya, T.V., Larina, A.S., Matsui, K., Fukui, K., and Sineoky, S.P., Biotechnol. Bioeng., 2010, vol. 107, no. 4, pp. 673–682.

    Article  CAS  PubMed  Google Scholar 

  9. Raychaudhuri, S., Young, B.P., Espenshade, P.J., and Loewen, C., Curr. Opin. Cell Biol., 2012, vol. 24, no. 4, pp. 502–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Runas, K.A. and Malmstadt, N., Soft Matter, 2015, vol. 11, no. 3, pp. 499–505.

    Article  CAS  PubMed  Google Scholar 

  11. Simpson, C.E. and Ashe, M.P., Biochem. Soc. Trans., 2012, vol. 40, no. 4, pp. 794–749.

    Article  CAS  PubMed  Google Scholar 

  12. Demasi, A.P.D., Pereira, G.A.G., and Netto, L.E.S., FEBS J., 2006, vol. 273, pp. 805–816.

    Article  CAS  PubMed  Google Scholar 

  13. Morano, K.A., Grant, C.M., and Moye-Rowley, W.S., Genetics, 2012, vol. 190, no. 4, pp. 1157–1195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Herrero, E., Ros, J., Bel, G., and Cabiscol, E., Biochim. Biophys. Acta, 2008, vol. 1780, pp. 1217–1235.

    Article  CAS  PubMed  Google Scholar 

  15. Lushchak, V.I., Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2011, vol. 153, pp. 175–190.

    Article  PubMed  Google Scholar 

  16. Han, W.G., Lovell, T., and Noodleman, L., Inorg. Chem., 2001, vol. 41, no. 2, pp. 205–218.

    Article  Google Scholar 

  17. Guidot, D.M., McCord, J.M., Wright, R.M., and Repine, J.E., J. Biol. Chem., 1993, vol. 268, no. 35, pp. 26699–29703.

    CAS  PubMed  Google Scholar 

  18. Costa, V., Amorim, M.A., Reis, E., Quintanilha, A., and Moradas-Ferreira, P., Microbiology, 1997, vol. 143, no. 5, pp. 1649–1656.

    Article  CAS  PubMed  Google Scholar 

  19. Epova, E., Guseva, M., Kovalyov, L., Isakova, E., Deryabina, Y., Belyakova, A., Zylkova, M., and Shevelev, A., Identification of Proteins Involved in pH Adaptation in Extremophile Yeast Yarrowia lipolytica, Heazlewood, J.L., Petzold, C.J., Man, T.-K., and Flores, R.J., Rijeka: INTECH, 2012, pp. 209–224.

  20. Deryabina, Y., Isakova, E., Antipov, A., and Saris, N.E., J. Bioenerg. Biomembr., 2013, vol. 45, no. 5, pp. 491–504.

    Article  CAS  PubMed  Google Scholar 

  21. Kostyuk, V.A., Potapovich, A.I., and Kovaleva, Zh.V., Vopr. Med. Khim., 1990, vol. 2, pp. 88p–91.

    Google Scholar 

  22. Davis, J.B., Ann. N.Y. Acad. Sci., 1964, vol. 121, pp. 404–427.

    Article  CAS  PubMed  Google Scholar 

  23. Lledias, F., Rangel, P., and Hansberg, W., J. Biol. Chem., 1998, vol. 273, no. 17, pp. 10630–10637.

    Article  CAS  PubMed  Google Scholar 

  24. Lopes, M., Gomes, N., Mota, M., and Belo, I., Appl. Biochem. Biotechnol., 2009, vol. 159, pp. 46–53.

    Article  CAS  PubMed  Google Scholar 

  25. Lopes, M., Mota, M., and Belo, I., Appl. Biochem. Biotechnol., 2013, vol. 170, pp. 448–458.

    Article  CAS  PubMed  Google Scholar 

  26. Brown, A.J.P., Budge, S., Kaloriti, D., Tillmann, A., Jacobsen, M.D., Yin, Z., Ene, V.I., Bohovych, I., Sandai, D., Kastora, S., Potrykus, J., Ballou, E.R., Childers, D.S., Shahana, S., and Leach, M.D., J. Exp. Biol., 2014, vol. 217, pp. 144–155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Galganska, H., Karachitos, A., Wojtkowska, M., Stobienia, O., Budzinska, M., and Kmita, H., Biochim. Biophys. Acta, 2010, vol. 1797, nos. 6–7, pp. 1276–1280.

    Article  CAS  PubMed  Google Scholar 

  28. Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., and Arbel, N., Mol. Aspects Med., 2010, vol. 31, no. 3, pp. 227–285.

    Article  CAS  PubMed  Google Scholar 

  29. Teplova, V.V., Odinokova, I.V., and Kholmukhamedov, E.L., Biol. Membr., 2011, vol. 28, no. 3, pp. 163–173.

    CAS  Google Scholar 

  30. Karachitos, A., Galganska, H., Wojtkowska, M., Budzinska, M., Stobienia, O., Bartosz, G., and Kmita, H., FEBS Lett., 2009, vol. 583, no. 2, pp. 449–455.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, K.H., Jun, S., Hur, H.S., Ryu, J.J., and Kim, J., Biochem. Biophys Res. Comms., 2005, vol. 3, pp. 784–790.

    Article  Google Scholar 

  32. Sies, H., J. Biol. Chem., 2014, vol. 289, no. 13, pp. 8735–8741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hansberg, W., Salas-Lizana, R., and Dominguez, L., Arch. Biochem. Biophys., 2012, vol. 525, no. 2, pp. 170–180.

    Article  CAS  PubMed  Google Scholar 

  34. Deryabina, Y., Isakova, E., Sekova, V., Antipov, A., and Saris, N.E., J. Bioenerg. Biomembr., 2014, vol. 46, no. 6, pp. 479–492.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Sekova.

Additional information

Original Russian Text © V.Yu. Sekova, N.N. Gessler, E.P. Isakova, A.N. Antipov, D.I. Dergacheva, Y.I. Deryabina, E.V. Trubnikova, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 6, pp. 570–577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekova, V.Y., Gessler, N.N., Isakova, E.P. et al. Redox status of extremophilic yeast Yarrowia lipolytica during adaptation to pH-stress. Appl Biochem Microbiol 51, 649–654 (2015). https://doi.org/10.1134/S0003683815060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683815060137

Keywords

Navigation