Skip to main content
Log in

The inhibitors of antioxidant cell enzymes induce permeability transition in yeast mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In this study we investigated the effects of exogenous and endogenous oxidative stress on mitochondrial membrane permeability transition in yeast cells. E. magnusii yeast was used in the study as it is the only yeast strain possessing a natural high-capacity Са2+ transport system. The key reactive oxygen species (ROS) detoxifying enzymes in the yeast cells - catalases (CATs) and superoxide dismutases (SODs) - were fully characterized. At least five isoforms of SODs and only one isoform of CATs were found in the E. magnusii mitochondria. The assessment of the main properties of mitochondrial non-specific permeability under physiological conditions such as dynamics of the membrane potential (∆Ψ) and swelling in mitochondria showed that under physiological conditions classical inhibitors of CATs (ATZ - 3-amino-1, 2, 4-triazole) and of SODs (DDC - diethyldithiocarbamate) caused irreversible decline in ∆Ψ in the yeast mitochondria. This decline was accelerated in the presence of 500 μM Са2+. The combined action of the inhibitors (ATZ + DDC) promoted moderate swelling in the isotonic medium, which was confirmed by transmission electron microscopy. Mitochondrial swelling in the cells exposed to antioxidant system inhibitors was accompanied by typical signs of early apoptosis, namely by chromatin margination and condensation, vacuolization of the cytosol, and damage of the plasma membrane. Here we showed, at both cellular and mitochondrial levels, that the deregulation of oxidant-scavenging enzymes directly leads to the opening of the mPTP, followed by induction of apoptotic markers in the whole yeast cells. Our studies are the first to clarify the highly contradictory data in the literature on mPTP in yeast mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman KEO, Wikström MKF (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197

    Google Scholar 

  • Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584:2504–2509

    Article  CAS  Google Scholar 

  • Balcavage WX, Lloyd JL, Matton JR, Ohnishi T, Scarpa A (1973) Cation movements and respiratory response in yeast mitochondria treated with high Ca2+ concentrations. Biochim Biophys Acta 305:41–51

    Article  CAS  Google Scholar 

  • Bazhenova EN, DeryabinaYI EO, Zvyagilskaya RA, Saris N-EL (1998) Characterization of a high-capacity calcium transport system in mitochondria of the yeast Endomyces magnusii. J Biol Chem 273:4372–4377

    Article  CAS  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Phys Rev 79:1127–1155

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398

    CAS  Google Scholar 

  • Carafoli E, Balcavage WX, Lehninger AL, Matton JR (1970) Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta 205:18–26

    Article  CAS  Google Scholar 

  • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143:1649–1656

    Article  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–407

    Google Scholar 

  • Demasi APD, Pereira GAG, Netto LES (2006) Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J 273:805–816

    Article  CAS  Google Scholar 

  • Deryabina YI, Bazhenova EN, Zvyagilskaya RA (2000) The Ca2+-Transport system of yeast (Endomyces magnusii) mitochondria: independent pathways for Ca2+ uptake and release. Biochem Mosc 65:1352–1356

    Article  CAS  Google Scholar 

  • Deryabina YI, Bazhenova EN, Saris NE, Zvyagilskaya RA (2001) Ca(2+) efflux in mitochondria from the yeast Endomyces magnusii. J Biol Chem 276(51):47801–47806

    CAS  Google Scholar 

  • Deryabina YI, Isakova EP, Shurubor EI, Zvyagilskaya RA (2004) Calcium-dependent non-specific permeability of the inner mitochondrial membrane is not induced in mitochondria of the yeast Endomyces magnusii. Biochem Mosc 69(9):1025–1033

    Article  CAS  Google Scholar 

  • Flohé L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    Article  Google Scholar 

  • Guidot DM, McCord JM, Wright RM, Repine JE (1993) Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem 268:26699–266703

    CAS  Google Scholar 

  • Gulbins E, Dreschers S, Bock J (2003) Role of mitochondria in apoptosis. Exp Physiol 88:85–90

    Article  CAS  Google Scholar 

  • Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    Google Scholar 

  • Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett. 567:96-102

    Google Scholar 

  • Hajnуczky G, Csordбs G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  Google Scholar 

  • Halliwell B, Aruoma OI (1991) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. FEBS Lett 281:9–19

    Article  CAS  Google Scholar 

  • Han D, Williams E, Cadenas E. (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J 353:411–416

    Google Scholar 

  • Hansford RG, Zorov D (1998) Role of mitochondrial calcium transport in the control of substrate oxidation. Mol Cell Biochem 184:359–369

    Article  CAS  Google Scholar 

  • Herrero E, Ros J, Bel G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235

    Article  CAS  Google Scholar 

  • Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem 272:21104–21112

    Article  CAS  Google Scholar 

  • Kostyuk VA, Potapovich AI, Kovaleva JV (1990) A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Vopr Med Chim 2:88–91

    Google Scholar 

  • Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl’kova MV, Ural’skaya LA, Popova KM, Saris NE, Zvyagilskaya RA (2009) Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. J Bioenerg Biomembr 41(3):239–249

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE, Rhee SG, Netto LE (2000) Catalases and thioredoxin peroxidase protect Saccharomyces cerevisiae against Ca(2+)-induced mitochondrial membrane permeabilization and cell death. FEBS Lett 473:177–182

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–43

    Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401

    Article  CAS  Google Scholar 

  • Leung AWC, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952

    Article  CAS  Google Scholar 

  • Lledias F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637

    Article  CAS  Google Scholar 

  • Lopez-Mirabal HR, Winther JR (2008) Redox characteristics of the eukaryotic cytosol. Biochim Biophys Acta 1783:629–640

    Article  CAS  Google Scholar 

  • Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190

    Google Scholar 

  • Matrosova EV, Masheyka IS, Kudryavtseva OA, Kamzolkina OV (2009) Morphogenesis and ultrastructure of basidiomycetes Agaricus and Pleurotus mitochondria. Cell and Tissue Biology 3(4):369–380

    Article  Google Scholar 

  • McCormack JG, Denton RM (1994) Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. News Physiol Sci 9:71–76

    CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic, San Diego

    Google Scholar 

  • Ojovan SM, Knorre DA, Severin FF, Bakeeva LE (2009) Yeast cell ultrastructure after amiodarone treatment. Tsitologiya 51(11):911–916

    CAS  Google Scholar 

  • Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann NY Acad Sci 1201:183–188

    Article  CAS  Google Scholar 

  • Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim. Biophys Acta 1783:1354–1368

    Article  CAS  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque strain in electron microscopy. J Biophys Biochem Cytol 17:208

    Article  CAS  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38

    Article  CAS  Google Scholar 

  • Streiblova E (1988) Cytological methods. In: Campbell J, Buffers JM (eds) Yeast – A Practical Approach, IRL Press, Oxford, pp 9–49

  • Trendeleva T, Sukhanova E, Ural’skaya L, Saris NE, Zvyagilskaya R (2011a) Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca(2+)-dependent permeability transition even under anaerobic conditions. J Bioenerg Biomembr 43(6):623–631

    Article  CAS  Google Scholar 

  • Trendeleva T, Sukhanova E, Ural’skaya L, Saris NE, Zvyagilskaya R (2011b) Effect of pro-oxidants on yeast mitochondria. J Bioenerg Biomembr 43(6):633–644

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  CAS  Google Scholar 

  • van Loon AP, Pesold-Hurt B, Schatz G (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci USA 83:3820–3824

    Article  Google Scholar 

  • Yamada A, Yamamoto T, Yoshimura Y, Gouda S, Kawashima S, Yamazaki N, Yamashita K, Kataoka M, Nagata T, Terada H, Pfeiffer DR, Shinohara Y (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim Biophys Acta 1787:1486–1491

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Isakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deryabina, Y., Isakova, E., Antipov, A. et al. The inhibitors of antioxidant cell enzymes induce permeability transition in yeast mitochondria. J Bioenerg Biomembr 45, 491–504 (2013). https://doi.org/10.1007/s10863-013-9511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9511-2

Keywords

Navigation