Skip to main content
Log in

Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen-inducible anionic peroxidase

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of chitooligosaccharides (COSs) with a molecular weight of 5–10 kDa and a degree of acetylation (DA) of 65 and 13% at a concentration of 1.0 mg/L on the expression of the TC151917 gene, which encodes wheat anionic peroxidase, and the activity of “anionic” isoperoxidases in common wheat plants infected with Septoria nodorum Berk.—the agent of Septoria leaf blotch were studied. Treatment with COSs with a 65% DA and infection promoted the transcription of the anionic peroxidase gene and increased the enzymatic activity of the anionic peroxidase with an isoelectric point (pI) of 3.5 in soluble and ion-bound to cell walls protein fractions. Chitooligosaccharides with a 13% DA change these parameters to a lesser extent. These data suggest the importance of the degree of acetylation of COSs in the development of wheat defense response with the peroxidases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramonell, K.M., Zhang, B., Ewing, R.M., Chen, Y., Xu, D., Stacey, G., and Somerville, S., Mol. Plant Pathology, 2002, vol. 3, no. 5, pp. 301–311.

    Article  CAS  Google Scholar 

  2. Zhang, B., Ramonell, K., Sommerville, S., and Stacey, G., Mol. Plant-Microbe Interact., 2002, vol. 15, no. 9, pp. 963–970.

    Article  CAS  PubMed  Google Scholar 

  3. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 29, pp. 11086–11091.

    Article  CAS  PubMed  Google Scholar 

  4. Vander, P., Varum, K.M., Domard, A., El Gueddari, N.E., and Moerschbacher, B.M., Plant Physiol., 1998, vol. 118, no. 4, pp. 1353–1359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Valueva, T., Mosolov, V.V., and Grigor’eva, L.I., Appl. Biochem. Microbiol., 2001, vol. 37, no. 6, pp. 545–552.

    Article  Google Scholar 

  6. Chen, H., Segun, P., Archambault, A., Constan, L., and Jabaji, S., Crop Sci., 2009, vol. 49, no. 2, pp. 224–236.

    Article  CAS  Google Scholar 

  7. Falcon, A.B., Cabrerra, J.C., Costales, D., Ramirez, M.A., Cabrerra, G., Toledo, V., and Martinez-Tellez, M.A., J. Microbiol. Biotechnol., 2008, vol. 24, no. 1, pp. 103–112.

    CAS  Google Scholar 

  8. Tsukada, K., Ishizaka, M., Fujisawa, Y., Iwasaki, Y., Yamaguchi, T., Minami, E., and Shibuya, N., Physiol. Plant., 2002, vol. 116, no. 3, pp. 373–382.

    Article  CAS  Google Scholar 

  9. Ning, W., Chen, F., Mao, B., Li, Q., Liu, Z., Guo, Z., and He, Z., N, Physiol. Mol. Plant Pathology, 2004, vol. 64, no. 2, pp. 263–271.

    Article  CAS  Google Scholar 

  10. Santos, A., El Guedarri, N., Tromboto, S., and Moerschbacher, B.M., Biomacromolecules, 2008, vol. 9, no. 12, pp. 3411–3415.

    Article  PubMed  Google Scholar 

  11. Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., and Fallik, E., Crop Protection, 2003, vol. 22, no. 2, pp. 285–290.

    Article  CAS  Google Scholar 

  12. Cabrera, J.C., Messiaen, J., Cambrier, P., and Van Cutsen, P., Physiol. Plant., 2006, vol. 127, no. 1, pp. 44–56.

    Article  CAS  Google Scholar 

  13. Khairullin, R.M., Yusupova, Z.R., and Maksimov, I.V., Russ. J. Plant Physiol., 2000, vol. 47, no. 1, pp. 97–102.

    CAS  Google Scholar 

  14. Maksimov, I.V., Valeev, A.Sh., and Safin, R.F., Biochemistry (Moscow), 2011, vol. 76, no. 12, pp. 342–1346.

    Article  Google Scholar 

  15. Pyzhikova, G.V. and Karaseva, E.V., Sel’skokhoz. Biol., 1985, no. 12, pp. 112–114.

    Google Scholar 

  16. Burkhanova, G.F., Yarullina, L.G., and Maksimov, I.V., Russ. J. Plant Physiol., 2007, vol. 54, no. 1, pp. 104–110.

    Article  CAS  Google Scholar 

  17. Muromtsev, G.S., Chkanikov, D.I., Kulaeva, O.N., and Gamburg, K.Z., Osnovy khimicheskoi regulyatsii rosta i produktivnosti rastenii (Principles of Chemical Regulation of Plant Growth and Productivity), Moscow: Agropromizdat, 1987.

    Google Scholar 

  18. Novozhilov, K.V. and Tyuterev, S.L., Agrokhimiya, 1993, no. 6, pp. 69–81.

    Google Scholar 

  19. Maksimov, I.V., Valeev, A.Sh., Cherepanova, E.A., and Yarullina, L.G., Appl. Biochem. Microbiol., 2009, vol. 45, no. 4, pp. 433–438.

    Article  CAS  Google Scholar 

  20. Maksimov, I.V., Cherepanova, E.A., Surina, O.B., and Sakhabutdinova, A.R., Russ. J. Plant Physiol., 2004, vol. 51, no. 4, pp. 480–485.

    Article  CAS  Google Scholar 

  21. Brunner, F., Stintzi, A., Fritig, B., and Legrand, M., Plant J., 1998, vol. 14, no. 2, pp. 225–234.

    Article  CAS  PubMed  Google Scholar 

  22. Schneider, S. and Ullrich, W.R., Physiol. Mol. Plant Pathology, 1994, vol. 45, no. 2, pp. 291–304.

    Article  CAS  Google Scholar 

  23. El Gueddari, N.E., Rauchhaus, U., Moerschbacher, B.M., and Deising, H.B., New Phytol., 2002, vol. 156, no. 1, pp. 103–112.

    Article  Google Scholar 

  24. Ferreira, R.B., Monteiro, S., Freitas, R., Santos, C.N., Chen, Z., Batista, L.M., Duarte, J., Borges, A., and Teixiera, A.R., Mol. Plant Pathology, 2007, vol. 8, no. 5, pp. 677–700.

    Article  CAS  Google Scholar 

  25. Blair, D.E., Schuttelkopf, A.W., Macrae, J.I., and van Aalten, D.M.F., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 16, pp. 15429–15434.

    Article  CAS  PubMed  Google Scholar 

  26. Hamel, L.P. and Beaudoin, N., Planta, 2010, vol. 232, no. 4, pp. 787–806.

    Article  CAS  PubMed  Google Scholar 

  27. Hiraga, S., Yamamoto, K., Ito, H., Sasaki, K., Matsui, H., Honma, M., Nagamura, Y., Sasaki, T., and Ohashi, Y., FEBS Lett., 2000, vol. 471, nos. 2–3, pp. 245–250.

    Article  CAS  PubMed  Google Scholar 

  28. Kamada, T. and Takemaru, T., J. Gen. Microbiol., 1983, vol. 76, no. 3, pp. 319–330.

    Google Scholar 

  29. Kamakura, T., Yamaguchi, S., Saitoh, K., Teraoka, T., and Yamaguchi, I., Mol. Plant-Microbe Interact., 2002, vol. 15, no. 5, pp. 437–444.

    Article  CAS  PubMed  Google Scholar 

  30. Nanda, A.K., Andrio, E., Marino, D., Pauly, N., and Dunand, C., J. Integr. Plant Biol., 2010, vol. 52, no. 2, pp. 195–204.

    Article  CAS  PubMed  Google Scholar 

  31. Glyan’ko, A.K. and Vasil’eva, G.G., Appl. Biochem. Microbiol., 2010, vol. 46, no. 1, pp. 15–22.

    Article  Google Scholar 

  32. Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Ann. Bot., 2003, vol. 91, no. 2, pp. 179–194.

    Article  CAS  PubMed  Google Scholar 

  33. De Gara, L., Pinto, M., and Tomasi, F., Plant Physiol. Biochem., 2003, vol. 41, pp. 863–870.

    Article  Google Scholar 

  34. Foyer, C.H. and Noctor, G., Physiol. Plant., 2003, vol. 119, no. 3, pp. 355–364.

    Article  CAS  Google Scholar 

  35. Maksimov, I.V. and Cherepanova, E.A., Usp. Sovrem. Biol., 2006, vol. 126, no. 3, pp. 250–261.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Maksimov.

Additional information

Original Russian Text © I.V. Maksimov, A.Sh. Valeev, E.A. Cherepanova, G.F. Burkhanova, 2014, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2014, Vol. 50, No. 1, pp. 95–100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, I.V., Valeev, A.S., Cherepanova, E.A. et al. Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen-inducible anionic peroxidase. Appl Biochem Microbiol 50, 82–87 (2014). https://doi.org/10.1134/S0003683813060124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813060124

Keywords

Navigation