Skip to main content
Log in

Inhibition of foodborne pathogens by a bacteriocin-like substance produced by a novel strain of Lactobacillus Acidophilus isolated from camel milk

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

As increasing demand for eliminating the use of chemical additives in foodstuff, bacteriocins might have significant potential in food preservation. Of 11 strains of Lactobacillus acidophilus isolated from camel milk 3 strains showed inhibitory activity against foodborne pathogens. L. acidophilus AA105 identified by 16S rRNA demonstrated antimicrobial activity of a wide spectrum. The bacteriolytic bacteriocin produced by L. acidophilus AA105 lost no activity after 30 min at 121°C and was sensitive to proteolytic enzymes. This antimicrobial compound produced at logarithm phase of cultivation and extracted with n-butanol was stored at 37°C for at least 70 days without loss of its activity. Native bacteriocin was retained by 5 kDa membrane with full activity. The sequencing of 12 amino acids of the N-terminus was determined as GNPKVAHCASQI. The genes encoding the antimicrobial compound were located on the chromosome but not in plasmid. L. acidophilus AA105 was investigated for susceptibility to available commercially antibiotics. These characteristics classify antimicrobial compound produced by L. acidophilus AA105 as a novel bacteriocin and give this compound an application potential as food biopreservative or antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilliland, S.E. and Speck, M.L., Appl. Environ. Microbiol., 1977, vol. 66, no. 6, pp. 1289–1292.

    Google Scholar 

  2. Morin, A., Saheb, S.A., Bisaillon, J.G., Beaudet, R., and Sylvestre, M., Curr. Microbiol., 1980, vol. 4, no. 5, pp. 283–286.

    Article  CAS  Google Scholar 

  3. Tagg, J.R., Dajani, A.S., and Wannamaker, L.W., Bacteriol. Rev., 1976, vol. 40, no. 3, pp. 722–756.

    PubMed  CAS  Google Scholar 

  4. Chen, H. and Hoover, D.G., Comprehensive Rev. Food Sci. Food Safety, 2003, vol. 2, no. 3, pp. 82–100.

    Article  CAS  Google Scholar 

  5. Ogunbanwo, S.T., Sanni, A.I., and Onilude, A.A., Afr. J. Biotechnol., 2003, vol. 2, no. 8, pp. 219–227.

    CAS  Google Scholar 

  6. Abo-Amer, A.E., Rev. Latinoam. Microbiol., 2006, vol. 48, no. 1, pp. 24–30.

    PubMed  Google Scholar 

  7. Abo-Amer, A.E., Ann. Microbiol., 2011, vol. 61, no. 3, pp. 445–452.

    Article  CAS  Google Scholar 

  8. Abo-Amer, A.E., and Shobrak, M.E., Afr. J. Microbiol. Res., 2012, vol. 6, no. 36, pp. 6589–6599.

    CAS  Google Scholar 

  9. Fooks, L.J. and Gibson, G.R., FEMS Microbiol. Ecol., 2002, vol. 39, no. 1, pp. 67–75.

    Article  PubMed  CAS  Google Scholar 

  10. Zamfir, M., Callewaert, R., Cornea, P.C., Savu, L., Vatafu, I., and De Vuyst, L., J. Appl. Microbiol., 1999, vol. 87, no. 6, pp. 923–931.

    Article  PubMed  CAS  Google Scholar 

  11. Bhattachary, S. and Das, A., Am. J. Food Technol., 2010, vol. 5, no. 2, pp. 111–120.

    Article  Google Scholar 

  12. Naidu, A.S., Bidlack, W.R., and Clemens, R.A., Crit. Rev. Food Sci. Nutrition, 1999, vol. 39, no. 1, pp. 13–126.

    Article  CAS  Google Scholar 

  13. Khedid, K., Faid, M., Mokhtari, A., Soulaymani, A., and Zinedine, A., Microbiol. Res., 2009, vol. 164, no. 1, pp. 81–91.

    Article  PubMed  CAS  Google Scholar 

  14. Benkerroum, N., Mekkaoui, M., Bennani, N., and Hidane, K., Int. J. Dairy Technol., 2009, vol. 57, no. 1, pp. 39–43.

    Article  Google Scholar 

  15. Krieg, N., Bergey’s Manual of Systematic Bacteriology, Baltimore: Williams and Wilkins, 1984, vols. 1, 2.

    Google Scholar 

  16. Tag, J.R. and McGiven, A.R., Appl. Microbiol., 1971, vol. 21, no. 5, p. 943.

    Google Scholar 

  17. Yu, J., Sun, Z., Liu, W., et al., J. Gen. Appl. Microbiol., 2009, vol. 55, no. 3, pp. 181–190.

    Article  PubMed  CAS  Google Scholar 

  18. Kanatani, K., Oshimura, M., and Sano, K., Appl. Environ. Microbiol., 1995, vol. 61, no. 3, pp. 1061–1067.

    PubMed  CAS  Google Scholar 

  19. O’Sullivan, D.J. and Klaenhammer, T.R., Appl. Environ. Microbiol., 1993, vol. 59, no. 8, pp. 2730–2733.

    PubMed  Google Scholar 

  20. Charteris, W.P., Kelly, P.M., Morelli, et al., J. Food Prot., 1998, vol. 61, no. 12, pp. 1636–1643.

    PubMed  CAS  Google Scholar 

  21. Aymerich, T., Martin, B., Garriga, M. Vidal-Carou, M.C., Bover-Cid, S., and Hugas, M., J. Appl. Microbiol., 2006, vol. 100, no. 1, pp. 40–49.

    Article  PubMed  CAS  Google Scholar 

  22. Tahara, T. and Kanatani, K., Biosci. Biotechnol. Biochem., 1997, vol. 61, no. 5, pp. 884–886.

    Article  PubMed  CAS  Google Scholar 

  23. Chumchalova, J., Stiles, J., Josephsen, J., and Plockova, M., J. Appl. Microbiol., 2004, vol. 96, no. 5, pp.1082–1089.

    Article  PubMed  CAS  Google Scholar 

  24. Toba, T., Yoshioka, E., and Itoh, T., Lett. Appl. Microbiol., 1991, vol. 12, no. 4, pp. 106–108.

    Article  CAS  Google Scholar 

  25. Muriana, P.M., and Klaenhammer, T.R., Appl. Environ. Microbiol., 1991, vol. 57, no. 1, pp. 114–121.

    PubMed  CAS  Google Scholar 

  26. Barefoot, S.F. and Klaenhammer, T.R., Antimicrob. Agents Chemother., 1984, vol. 26, no. 3, pp. 328–334.

    Article  PubMed  CAS  Google Scholar 

  27. Tahar, T., Kanatania, K., Yoshida, K. Miura, H., Sakamoto, M., and Oshimura, M., Biosci. Biotech. Biochem., 1992, vol. 56, no. 8, pp. 1212–1215.

    Article  Google Scholar 

  28. ten Brink, B., Minekus, M., van der Vossen, J.M.B.M., Leer, R. J., and Huis In’t Veld, J.H.J., J. Appl. Bacteriol., 1994, vol. 77, no. 2, pp. 140–148.

    Article  PubMed  Google Scholar 

  29. Deraz, S.F., Karlsson, E.N., Hedstrom, M. Andersson, M.M., and Mattiasson, B., J. Biotech., 2005, vol. 117, no. 4, pp. 343–354.

    Article  CAS  Google Scholar 

  30. Jimenez-Diaz, R., Rios-Sanchez, R.M., and Piard, J.C., Appl. Environ. Microbiol., 1993, vol. 59, no. 5, pp. 1416–1424.

    PubMed  CAS  Google Scholar 

  31. Sivakumar, N, Rajamani, and Saif, A., Braz. Arch. Biol. Technol., 2010, vol. 53, no. 5, pp. 1177–1184.

    Article  Google Scholar 

  32. Rattanachaikunsopon, P. and Phumkhachorn, P., J. Food Prot., 2006, vol. 69, no. 8, pp.1937–1943.

    PubMed  CAS  Google Scholar 

  33. Marroki, A., Zuniga, M, Kihal, M., and Pérez-Martínez, G., Braz. J. Microbiol., 2011, vol. 42, no, 1, pp.158–171.

    Article  CAS  Google Scholar 

  34. Ammor, M.S., Flores, A.B., and Mayo, B., Food Microbiol., 2007, vol. 24, no. 6, pp. 559–570.

    Article  PubMed  CAS  Google Scholar 

  35. Piard, J.C. and Desmazeaud, M., Lait, 1992, vol. 72, no. 2, pp. 113–142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Abo-Amer.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abo-Amer, A.E. Inhibition of foodborne pathogens by a bacteriocin-like substance produced by a novel strain of Lactobacillus Acidophilus isolated from camel milk. Appl Biochem Microbiol 49, 270–279 (2013). https://doi.org/10.1134/S0003683813030174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813030174

Keywords

Navigation