Skip to main content

Advertisement

Log in

Antimicrobial activity of bacteriocins produced by Enterococcus isolates recovered from Egyptian homemade dairy products against some foodborne pathogens

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The increasing mandate for fresh-like food products and the possible hazards of chemically preserved foods necessitate the search for alternatives. Bacteriocins represent a promising food biopreservative. In the present study, one hundred enterococci isolates recovered from Egyptian raw cow milk and homemade dairy products were screened for bacteriocin production. The overall detection rate was 10%. Three isolates, namely, Enterococcus faecalis (OE-7 and OE-12) and Enterococcus hirae (OE-9), showed the highest antibacterial activity with narrow spectrum against multidrug-resistant (MDR) Gram-positive foodborne bacteria: Enterococcus faecalis and Staphylococcus aureus. The antimicrobial activity was completely abolished by trypsin and proteinase K but not affected by lipase and/or amylase indicating the protein nature of the antimicrobial activity. Optimum conditions for bacteriocin production were cultivation in MRS broth at 37 °C, pH 6–6.5 for 16–24 h. The tested bacteriocins exhibited bactericidal activity on S. aureus subsp. aureus ATCC 25923; such activity was further investigated by transmission electron microscopy that revealed leakage and lysis of treated cells. Characterization of tested bacteriocins revealed high activity in a wide range of pH and temperature, storage stability, and heat resistance. PCR analysis revealed that the tested isolates produced multiple enterocins showing homology with the enterocins L50A, AS-48, and 31. Finally, this study reported potent antibacterial activity of bacteriocins derived from dairy products Enterococci against MDR foodborne and spoilage pathogens. The potency, specificity, and stability of these bacteriocins presented promising perspectives for application as biopreservatives in the food industry. The biopreservation of foods by bacteriocins produced by lactic acid bacteria recovered directly from foods remains an innovative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadova A, Todorov SD, Choiset Y et al (2013) Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control 30:631–641

    Article  CAS  Google Scholar 

  • Al-Madboly LA, Abdullah AK (2015) Potent antagonistic activity of Egyptian Lactobacillus plantarum against multiresistant and virulent food-associated pathogens. Front Microbiol 6:347. https://doi.org/10.3389/fmicb.2015.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • And HC, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2(3):82–100

    Article  Google Scholar 

  • Arqués JL, Rodríguez E, Langa S, Landete JM, Medina M (2015) Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. BioMed research international

  • Belguesmia Y, Choiset Y, Prevost H, Dalgalarrondo M, Chobert JM, Drider D (2010) Partial purification and characterization of the mode of action of enterocin S37: a bacteriocin produced by Enterococcus faecalis S37 isolated from poultry feces. J Environ Public Health 2010:1–8

    Article  Google Scholar 

  • Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H (1997) EnterocinB, and bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143:2287–2294. https://doi.org/10.1099/00221287-143-7-2287

    Article  CAS  PubMed  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF et al (2010) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  Google Scholar 

  • De Vuyst L, Foulquie Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84(3):299–318

    Article  Google Scholar 

  • del Campo R, Tenorio C, Jimenez-Diaz R, Rubio C, Gomez-Lus R, Baquero F et al (2001) Bacteriocin production in vancomycin-resistant and vancomycin-susceptible Enterococcus isolates of different origins. Antimicrob Agents Chemother 45(3):905–912. https://doi.org/10.1128/AAC.45.3.905-912.2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Devriese LA, Pot B, Collins MD (1993) Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J Appl Bacteriol 75:399–408

    Article  CAS  Google Scholar 

  • Du Toit M, Franz CM, Dicks LM, Holzapfel WH (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol 88:482–494

    Article  Google Scholar 

  • Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD (2016) Bacteriocins: novel solutions to age old spore-related problems? Front Microbiol 7:461

    PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (EFSA) (2007) Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA J 5(12):587

    Article  Google Scholar 

  • Franz CMAP, Schillinger U, Holzapfel WH (1995) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270

    Article  Google Scholar 

  • Gálvez A, Maqueda M, Valdivia E, Quesada A, Montoya E (1986) Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Can J Microbiol 32:765–771

    Article  Google Scholar 

  • Gálvez A, Valdivia E, Abriouel H, Camafeita E, Mendez E, Martínez-Bueno M, Maqueda M (1998) Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol 171:59–65

    Article  Google Scholar 

  • Han S-K, Myeong-Su S, Ho-Eun P, So-Young K, Wan-Kyu L (2014) Screening of bacteriocin-producing Enterococcus faecalis strains for antagonistic activities against Clostridium perfringens. Korean J. Food Sci. An. 34(5):614–621

    Article  Google Scholar 

  • Ivanova I, Kabadjova P, Pantev A, Danova S, Dousset X (2000) Detection, purifiction and partial characterization of a novel bacteriocin substance produced by Lactoccous lactis subsp. lactis b14 isolated from Boza-Bulgarian traditional cereal beverage. Biocatalysis 41:47–53

    Google Scholar 

  • Javed A, Masud T, ul Ain Q, Imran M, Maqsood S (2011) Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol 61(4):699–708

    Article  Google Scholar 

  • Kang Bong S, Jan-Gu S, Gwa-Su L et al (2009) Antimicrobial activity of Enteroins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris and its therapeutic effect. J Microbiol 47(1):101–109

    Article  Google Scholar 

  • Kato T, Matsuda T, Yoneyama Y, Kato H, Nakamura R (1993) Isolation of Enterococcus faecium with antibacterial activity and characterization of its bacteriocin. Biosci Biotechnol Biochem 57:551–556

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86

    Article  CAS  Google Scholar 

  • Lejeune R, Callewaert R, Crabbe K, De Vuyst L (1998) Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. J Appl Bacteriol 84:159–168

    Article  CAS  Google Scholar 

  • McDowell EM, Trump BF (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100(8):405–414

    CAS  PubMed  Google Scholar 

  • Mendoza F, Maqueda M, Galvez A, Martınez-Bueno M, Valdivia E (1999) Antilisterial activity of peptide AS-48 and studies of changes induced in the cell envelope properties of an AS-48 adapted strain of L. monocytogenes. Appl Environ Microbiol 65:618–625

    Article  CAS  Google Scholar 

  • Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi Y (2014) A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells. J Appl Microbiol 117:498–508

    Article  CAS  Google Scholar 

  • Nascimento M d S d, Moreno I, Kuaye AY (2010) Antimicrobial activity of Enterococcus faecium FAIR-E 198 against gram-positive pathogens. Braz J Microbiol 41:74–81

    Article  Google Scholar 

  • Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P (2017) A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS One 12(10):e0186415. https://doi.org/10.1371/journal.pone.0186415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeta P, Costa D, Rojo-Bezares B, Zarazaga M, Klibi N, Rodrigues J, Torres C (2007) Detection of antimicrobial activities and bacteriocin structural genes in faecal enterococci of wild animals. Microbiol Res 162:257–263

    Article  CAS  Google Scholar 

  • Ribeiro SC, Ross RP, Stanton C, Silva CC (2017) Characterization and application of antilisterial enterocins on model fresh cheese. J Food Prot 80(8):1303–1316

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. In: Sambrook J, Fritsch EF, Maniatis T (eds) A laboratory manual, vol 1, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 5

    Google Scholar 

  • Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M (2011) AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 68(17):2845–2857

    Article  Google Scholar 

  • Schlegel R, Slade HD (1974) Alteration of macromolecular synthesis and membrane permeability by a Streptococcus sanguis bacteriocin. Journal of general microbiology 81(1):275±7. https://doi.org/10.1099/00221287-81-1-275

    Article  Google Scholar 

  • Schleifer KH, Kilpper-Bälz R (1984) Transfer of Streptococcus faecalis and S. faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Intl J Syst Bacteriol 34:31–34

    Article  Google Scholar 

  • Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob Proteins 9:111–122. https://doi.org/10.1007/s12602-017-9264-z

    Article  PubMed  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551

    Article  CAS  Google Scholar 

  • Shin MS, Han SK, Ji AR, Kim KS, Lee WK (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J Appl Microbiol 105(2008):2203–2212

    Article  CAS  Google Scholar 

  • Silva C, Silva S, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol 9:594. https://doi.org/10.3389/fmicb.2018.00594

    Article  PubMed  PubMed Central  Google Scholar 

  • Simha BV, Sood SK, Kumariya R, Garsa AK (2012) Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol Res 167(9):544–549

    Article  Google Scholar 

  • Simova ED, Beshkova DB, Dimitrov ZP (2009) Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol 106(2):692±701. https://doi.org/10.1111/j.1365-2672.2008.04052.x

    Article  CAS  Google Scholar 

  • Sparo MD, Castro MS, Andino PJ, Lavigne MV, Ceriani C, Gutierrez GL, Fernandez MM, De Marzi MC, Malchiodi EL, Manghi MA (2006) Partial characterization of enterocin MR99 from a corn silage isolate of Enterococcus faecalis. J Appl Microbiol 100:123–134

    Article  CAS  Google Scholar 

  • Suda S, Cotter PD, Hill C, Paul Ross R (2012) Lacticin 3147-biosynthesis, molecular analysis, immunity, bioengineering and applications. Current Protein and Peptide Science 13(3):193–204

    Article  CAS  Google Scholar 

  • Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21(5):943

    Article  CAS  Google Scholar 

  • Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA- isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz.J.Microbiol 39:178–187. https://doi.org/10.1590/S1517-83822008000100035

    Article  PubMed  PubMed Central  Google Scholar 

  • Todorov SD, Dicks Leon MT (2005) Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J Microbiol 43(4):370–374

    CAS  PubMed  Google Scholar 

  • Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayendra SV, Rajashree K, Halami PM (2010) Characterization of a heat stable anti-listerial bacteriocin produced by vancomycin sensitive Enterococcus faecium isolated from idli batter. Indian J Microbiol 50(2):243–246. https://doi.org/10.1007/s12088-010-0030-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Animal Health Research Institute, Tanta lab, for providing Y. pestis and B. cereus strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omnia M. Al-Fakhrany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonbol, F.I., Abdel Aziz, A.A., El-Banna, T.E. et al. Antimicrobial activity of bacteriocins produced by Enterococcus isolates recovered from Egyptian homemade dairy products against some foodborne pathogens. Int Microbiol 23, 533–547 (2020). https://doi.org/10.1007/s10123-020-00127-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-020-00127-z

Keywords

Navigation