Skip to main content
Log in

Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The changes in transcription of genes involved in nitrogen metabolism and curdlan biosynthesis, and total protein expression were firstly analyzed to define the responses of Agrobacterium sp. ATCC 31749 to nitrogen source availability during curdlan fermentation. The transcription of all nitrogen metabolism and regulation genes increased significantly under nitrogen limitation. The genes of carbon (exoC) and nitrogen (ntrB, ntrC, and nifR) metabolism showed distinctive transcriptional responses to nitrogen limitation. Their relative expression level was increased by 14, 9, 7 and 7-fold, respectively. Two-dimentional electrophoresis (2-DE) revealed that the expression of 14 proteins were elevated and 6 proteins were down-regulated significantly under nitrogen starvation. Furthermore, 4 proteins (GroEL, ABC transporter, Atu1730 and enoylacyl carrier protein reductase) in which the expression level changed significantly were identified. The results showed that L sp. regulates its carbon flux and nitrogen assimilation effectively for better survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, T., Fujimori, K., Hirose, S., and Masada, M., Agric. Biol. Chem., 1966, vol. 30, no. 8, pp. 764–769.

    Article  CAS  Google Scholar 

  2. Sun, J., Peng, X., Jan, V.I., and Vanderleyden, J., Appl. Environ. Microbiol., 2000, vol. 6, no. 1, pp. 113–117.

    Article  Google Scholar 

  3. Andrew, J. and Leech, A.S., J. Bacteriol., 2008, vol. 190, no. 2, pp. 581–589.

    Article  Google Scholar 

  4. Krzeslak, J., Gerritse, G., Ronald, V.M., Robbert, C., and Quax, W. J., Appl. Environ. Microbiol., 2008, vol. 74, pp. 1402–1411.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, H.K., Park, S.J., and Lee, K.H., Mol. Microbiol., 2009, vol. 74, no. 2, pp. 436–453.

    Article  PubMed  CAS  Google Scholar 

  6. Zheng, Z.Y., Lee, J.W., Zhan, X.B., Shi Z.P., Wang, L., Zhu, L., Wu, J.R., and Chi, C.C., Biotechnol. Bioproc. E., 2007, vol. 12, no. 4, pp. 359–365.

    Article  CAS  Google Scholar 

  7. Zhan, X.B., Han, J., Li, Z.Y., Zhu, L., Wang, L., and Zhu, Y.H., J. Food. Sci. Biotechnol., 2001, vol. 20, no. 4, pp. 347–351.

    CAS  Google Scholar 

  8. Harwood, J.E. and Huysen, D.J., Water. Res., 1970, vol. 4, no. 10, pp. 695–704.

    Article  Google Scholar 

  9. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, no. 4, pp. 402–408.

    Article  PubMed  CAS  Google Scholar 

  10. Shaw, M.M. and Riederer, B.M., Proteomics, 2003, vol. 3, no. 8, pp. 1408–1417.

    Article  PubMed  CAS  Google Scholar 

  11. Rabilloud, T., Methods. Mol. Biol., 1999, vol. 112, pp. 297–305.

    PubMed  CAS  Google Scholar 

  12. Candiano, G. and Bruschi, L.M., Electrophoresis, 2004, vol. 25, no. 9, pp. 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  13. Desroche, N., Beltramo, C., and Guzzo, J., J. Microbiol. Meth., 2005, vol. 60, no. 3, pp. 325–333.

    Article  CAS  Google Scholar 

  14. Hill, S., Kennedy, C., Kavanag, E., Goldberg, R.B., and Hanau, R., Nature, 1981, vol. 290, no. 5805, pp. 424–426.

    Article  PubMed  CAS  Google Scholar 

  15. Raetz, C.R.H., Cellular and Molecular Biology, Washington DC: ASM Press, 1996, pp. 104–122.

    Google Scholar 

  16. Mcintosh, M., Stone, B.A., and Stanisich, V.A., Appl. Microbiol. Biotechnol., 2005, vol. 68, pp. 163–173.

    Article  PubMed  CAS  Google Scholar 

  17. Bartels, F.W., Baumgarth, B.A., Nselmetti, D., Robert, R., and Becker, A., J. Struct. Biol., 2003, vol. 143, no.2, pp. 145–152.

    Article  PubMed  CAS  Google Scholar 

  18. Karnezis, T., Fisher, H.C., Neumann, G.M., Stone, B.A., and Stanisich, V.A., J. Bacteriol., 2002, vol. 184, no. 15, pp. 4114–4123.

    Article  PubMed  CAS  Google Scholar 

  19. Harye-Hartl, M.K. and Weber, F., EMBO J., 1996, vol. 15, no. 22, pp. 6111–6121.

    Google Scholar 

  20. Wang, H.B., Zhang, Z.Y., Bao, R., and Chen, X. Y., Chem. Life, 2007, vol. 27, no. 3, pp. 208–210.

    CAS  Google Scholar 

  21. Atkinson, M.R., Blauwkamp, T.A., and Ninfa, A.J., J. Bacteriol., 2002, vol. 184, no. 19, pp. 5364–5375.

    Article  PubMed  CAS  Google Scholar 

  22. Kumar, R. and Shimizu, K., Microb. Cell. Fact., 2010, vol. 9, pp. 1–17.

    Article  Google Scholar 

  23. Eberl, L., Ammendola, A., Rothballer, M.H., Givskov, M., Sternberg, C., Kilstrup, M., Schliefer, K.H., and Molin, S., J. Bacteriol., 2000, vol. 182, no. 12, pp. 3368–3376.

    Article  PubMed  CAS  Google Scholar 

  24. Brautaset, T., Petersen, S.B., and Valla, S., Metab. Eng., 2000, vol. 2, no. 2, pp. 104–114.

    Article  PubMed  CAS  Google Scholar 

  25. Janczarek, M. and Skorupska A., Antonie Van Leeuwenhoek, 2004, vol. 85, no. 3, pp. 217–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L.J., Wu, J.R., Zheng, Z.Z. et al. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. Appl Biochem Microbiol 47, 487–493 (2011). https://doi.org/10.1134/S0003683811050188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683811050188

Keywords

Navigation