Skip to main content
Log in

Selective extraction of metals from zinc concentrate by association of chemolithotrophic bacteria

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Ability for selective extraction of copper and zinc from zinc concentrate using association of chemolithotrophic bacteria was investigated. In the presence of bacterial association, the rate of leaching of zinc, copper, and iron was increased 3-fold, 4–5-fold, and 2-fold, respectively. The results indicate the maximum dissolution rate for zinc, then followed by copperand iron. It was revealed that addition of Fe3+ 2 g/l resulted in reduction of iron leaching and in 3-fold increase of leaching rate of copper at constant dissolution rate of mineral zinc. It is suggested that the intensification of copper leaching is connected with the activity of sulfur-oxidizing bacteria able to activate the mineral surface via elimination of passivation layer of elemental sulfur. It was concluded that sulfur-oxidizing bacteria play a significant role in copper leaching from zinc concentrate. A unique strain of mesophile sulfur-oxidizing bacteria was isolated from leaching pulp of zinc concentrate; in the perspective, it may serve as efficient candidate for performing of selective extraction of copper from zinc concentrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloyan, P.G., Aloyan, G.P., Davtyan, A.A., Markosyan, A.A., Arutyunyan, T.M., and Stepanyan, I.G., Metally: Chernye, tsvetnye, blagorodnye, redkie metally i redkie zemli (Metals: Ferrous, Nonferrous, Precious, Rare Metals and Rare Earths), Yerevan: GEOID, 2006.

    Google Scholar 

  2. Adamov, E.V. and Panin, V.V., Biotekhnologiya metallov (Biotechnology of Metals), Moscow: MISiS, 2003.

    Google Scholar 

  3. Carranza, F., Carcia, M.J., Palentia, I., and Pereda, J., Hydrometallurgy, 1990, vol. 24, no. 1, pp. 67–76.

    Article  CAS  Google Scholar 

  4. Carranza, F., Iglesias, N., Romero, R., and Palencia, I., FEMS Microbiol. Rev., 1993, vol. 11, nos. 1–3, pp. 129–138.

    Article  CAS  Google Scholar 

  5. Fowler, T.A. and Crundwell, F.K., Appl. Environ. Microbiol., 1999, vol. 65, no. 12, pp. 5285–5292.

    PubMed  CAS  Google Scholar 

  6. Harneit, K., Goksel, A., Kock, D., Klock, J.-H., Gehrke, T., and Sand, W., Hydrometallurgy, 2006, vol. 83, nos. 1–4, pp. 245–254.

    Article  CAS  Google Scholar 

  7. Sandstrom, A. and Petersson, S., Hydrobiology, 1997, vol. 46, nos. 1–2, pp. 181–190.

    Google Scholar 

  8. Rehman, M., Anvar, M.A., Iqbal, M., Akhtar, K.., Khalia, A.M., and Ghauri, M.A., Hydrometallurgy, 2009, vol. 97, nos. 1–2, pp. 1–7.

    Article  CAS  Google Scholar 

  9. Giaveno, A., Lavalle, L., Chiacchiarini, P., and Donati, E., Hydrometallurgy, 2007, vol. 89, nos. 1–2, pp. 117–126.

    Article  CAS  Google Scholar 

  10. Nagdalyan, S.Z., Kocharyan, E.M., and Vardanyan, N.S., Biol. Zh. Arm., 2009, vol. 61, no. 1, pp. 18–23.

    Google Scholar 

  11. Vardanyan, N.S. and Nagdalyan, S.Z., Appl. Biochem. Microbiol., 2009, vol. 45, no. 4, pp. 401–405.

    Article  CAS  Google Scholar 

  12. Biogeotekhnologiya metallov. Prakticheskoe rukovodstvo (Biogeotechnology of Metals: A Practical Guide), Karavaiko, G.I., Rossi, J., Agate, A., Grudev, S., and AvakyanEds, Z.A., Eds., Moscow: Tsentr Mezhd. Proektov GKNT, 1989.

    Google Scholar 

  13. Reznikov, A.A., Mulikovskaya, E.P. and Sokolov, I.Yu., Metody analiza prirodnykh vod (Analytical Methods for Natural Waters), Moscow: Nedra, 1970.

    Google Scholar 

  14. Olson, G.J., Brierley, J.A., and Brierley, C.I., Appl. Environ. Microbiol., 2003, vol. 63, no. 3, pp. 249–257.

    CAS  Google Scholar 

  15. Promyshlennaya mikrobiologiya (Industrial Microbiology), Egorov, N.S., Ed., Moscow: Vysshaya shkola, 1989, pp. 634–660.

    Google Scholar 

  16. Adelson De, S., Pablo, S.P., and Versiane, A.L., Miner. Engin., 2007, vol. 20, no. 6, pp. 591–599.

    Article  Google Scholar 

  17. Shi, S-Y., Fang, Z-H., and Ni, J-R., Proc. Biochem. Soc., 2006, vol. 41, no. 2, pp. 438–446.

    Article  CAS  Google Scholar 

  18. Deveci, H., Akcil, A., and Alp, I., Hydrometallurgy, 2004, vol. 73, nos. 3–4, pp. 293–303.

    Article  CAS  Google Scholar 

  19. Kai, T., Suenaga, Y-I., Migita, A., and Takahashi, T., Chem. Engin. Sci., 2000, vol. 55, no. 17, pp. 3429–3436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Vardanyan.

Additional information

Original Russian Text © N.S. Vardanyan, A.K. Vardanyan, 2011, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2011, Vol. 47, No. 5, pp. 566–571.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardanyan, N.S., Vardanyan, A.K. Selective extraction of metals from zinc concentrate by association of chemolithotrophic bacteria. Appl Biochem Microbiol 47, 515–519 (2011). https://doi.org/10.1134/S0003683811050140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683811050140

Keywords

Navigation