Skip to main content
Log in

Rapid differentiation of bacterial species by high resolution melting curve analysis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Molecular based differentiation of various bacterial species is important in phylogenetic studies, diagnostics and epidemiological surveillance, particularly where unusual phenotype makes the classical phenotypic identification of bacteria difficult. Molecular approach based on the sequence of 16S ribosomal RNA gene analysis can achieve fast and reliable identification of bacteria. High resolution melting (HRM) curve analysis has been developed as an attractive novel technique for DNA sequence discrimination but it’s application for bacteria differentiation has not been well studied yet. We have developed HRM assay for differentiation of sixteen pathogenic or opportunistic bacterial species. Amplified partial 16S ribosomal RNA gene region between 968 and 1401 positions (E. coli reference numbering) was subsequently used in high resolution melting curve analysis of PCR products for bacterial species differentiation. Sixteen bacterial species were simultaneously discerned by difference plot of normalized and temperatures shifted melting curves, without need for spiking of DNA, hetero-duplexing experiments or application of several primer pairs. High resolution melting curve analysis of duplex DNA is simple, fast and reliable tool for bacterial species differentiation and may efficiently complement phenotypic identification of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hugenholtz, P., Goebell, B.M., and Pace, R.N., J. Bacteriol., 1998, vol. 180, no. 18, pp. 4765–4774.

    PubMed  CAS  Google Scholar 

  2. Klaschik, S., Lehman, L.E., Raadts, A., Book, M., Gebel, J., Hoeft A., and Stuber, F., J. Clin. Microbiol., 2004, vol. 42, no. 2, pp. 512–517.

    Article  PubMed  CAS  Google Scholar 

  3. Fortini, D., Ciammaruconi, A., De Santis, R., Fasanella, A, Battisti, A., D’Amellio, R., Lista, F., Cassone, A., and Carratoli, A., Clin. Chem., 2007, vol. 53, no. 7, pp. 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  4. Price, E.P., Smith, H., Huygens, F., and Giffard, P.M., Appl. Environ. Microbiol., 2007, vol. 73, no. 10, pp. 3431–3436.

    Article  PubMed  CAS  Google Scholar 

  5. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P., and Raoult, D., J. Clin. Microbiol., 2000, vol. 38, no. 10, pp. 3623–3630.

    PubMed  CAS  Google Scholar 

  6. Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T., and Tanaka, R., Appl. Environ. Microbiol., 2004, vol. 70, no. 12, pp. 7220–7228.

    Article  PubMed  CAS  Google Scholar 

  7. Bartosch, S., Fite, A., Macfarlane, G.T., and McMurdo, M.E.T., Appl. Environ. Microbiol., 2004, vol. 70, no. 6, pp. 3575–3581.

    Article  PubMed  CAS  Google Scholar 

  8. Woese, C.R., Microbiol. Rev., 1987, vol. 51, no. 2, pp. 221–271.

    PubMed  CAS  Google Scholar 

  9. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., J. Bacteriol., 1991, vol. 173, no. 2, pp. 697–703.

    PubMed  CAS  Google Scholar 

  10. Clarridge, III J.E., Clin. Microbiol. Rev., 2004, vol. 17, no. 4, pp. 840–862.

    Article  PubMed  CAS  Google Scholar 

  11. Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G., and Pryor, R.J., Clin. Chem., 2003, vol. 49, no. 6, pp. 853–860.

    Article  PubMed  CAS  Google Scholar 

  12. Lay, M.J. and Wittwer, C.T., Clin. Chem., 1997, vol. 43, no. 12, pp. 2262–2267.

    PubMed  CAS  Google Scholar 

  13. Ririe, K.M., Rasmussen, R.P., and Wittwer, C.T., Anal. Biochem., 1997, vol. 245, pp. 154–160.

    Article  PubMed  CAS  Google Scholar 

  14. Herrmann, M.G., Durtschi, J.D., Bromley, L.K., Wittwer, C.T., and Voelkerding, K.V., Clin. Chem., 2006, vol. 52, no. 3, pp. 494–503.

    Article  PubMed  CAS  Google Scholar 

  15. Odell, I.D., Cloud, J.L., Seipp, M., and Wittwer, C.T., Am. J. Clin. Pathol., 2005, vol. 123, pp. 96–101.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng, J.C., Huang, C.L., Lin, C.C., Chen, C.C., Chang, Y.C., Chang, S.S., and Tseng, C.P., Clin. Chem., 2006, vol. 52, no. 11, pp. 1997–2004.

    Article  PubMed  CAS  Google Scholar 

  17. Nuebel, U., Engelen, B., Felske, A., Snaidr, J., Weishuber, A., Amann, R.I., et al., J. Bacteriol., 1996, vol. 178, no. 19, pp. 5636–5643.

    CAS  Google Scholar 

  18. McGinnis, S., and Madden, T.L., Nucl. Acids Res., 2004, vol. 32, pp. W20–W25.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmoughin, F., and Higgins, D.G., Nucl. Acids Res., 1997, vol. 25, no. 24, pp. 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  20. Wittwer, C.T., Herrmann, M.G., Moss. A.A., and Rasmussen, R.P., BioTechniques, 1997, vol. 22, no. 1, pp. 130–138.

    PubMed  CAS  Google Scholar 

  21. Reed, G.H., and Wittwer, C.T., Clin. Chem., 2004, vol. 50, no. 10, pp. 1748–1754.

    Article  PubMed  CAS  Google Scholar 

  22. Clayton, R.A., Sutton, G., Hinkle, P.S., Bult, C., and Fieds, C., Int. J. Syst. Bacteriol., 1995, vol. 45, no. 3, pp. 595–599.

    Article  PubMed  CAS  Google Scholar 

  23. Gundry, C.N., Vandersteen, J.G., Reed, G.H., Proyor, R.J., Chen, J., and Wittwer, C.T., Clin. Chem., 2003, vol. 49, no. 3, pp. 396–406.

    Article  PubMed  CAS  Google Scholar 

  24. Yu, Z., Morrison, M., Appl. Environ. Microbiol., 2004, vol. 70, no. 8, pp. 4800–4806.

    Article  PubMed  CAS  Google Scholar 

  25. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R., and Dore, J., Gut, 2003, vol. 52, no. 2, pp. 237–242.

    Article  PubMed  CAS  Google Scholar 

  26. Zoetendal, E.G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A.D.L., and de Vos, W.M., Appl. Environ. Microbiol., 2002, vol. 68, no. 7, pp. 3401–3407.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šimenc.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimenc, J., Potočnik, U. Rapid differentiation of bacterial species by high resolution melting curve analysis. Appl Biochem Microbiol 47, 256–263 (2011). https://doi.org/10.1134/S0003683811030136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683811030136

Keywords

Navigation