Skip to main content
Log in

Deck Spectroradiometer for Measuring Remote Sensing Reflectance

  • INSTRUMENTS AND RESEARCH METHODS
  • Published:
Oceanology Aims and scope

Abstract

The results of the development and field testing of a compact high-speed deck spectroradiometer for remote sensing reflectance measurements are presented. Validation using data obtained with hydrooptical equipment showed that the new device makes it possible to measure data on remote sensing reflectance with an accuracy sufficient for calculating bio-optical characteristics. Based on the data obtained during field tests of the new device, processed using regional algorithms, the values of the bio-optical characteristics of the Kara and Black seas surface waters were quantitatively assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. A. Artemiev, V. I. Burenkov, M. I. Vortman, et al., “Sub-satellite measurements of ocean color: floating spectroradiometer and its metrology,” Oceanology 40 (1), 139–145 (2000).

    Google Scholar 

  2. V. A. Artem’ev, V. R. Taskaev, V. I. Burenkov, and A. V. Grigor’ev, “Universal compact meter of the vertical distribution of the beam attenuation coefficient” in Comprehensive Studies of the World Ocean: Project Meridian. Part 1. Atlantic Ocean (Nauka, Moscow, 2008).

    Google Scholar 

  3. V. I. Burenkov, S. V. Ershova, O. V. Kopelevich, et al., “An estimate of the distribution of suspended matter in the Barents Sea waters on the basis of the SeaWiFS satellite ocean color scanner,” Oceanology 41 (5), 622–628 (2001).

    Google Scholar 

  4. A. I. Ginzburg, A. G. Kostyanoi, and N. A. Sheremet, “About the dynamics of waters in the Kara-Bogaz-Gol Bay (satellite information),” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 19 (4), 265–279 (2022).

    Article  Google Scholar 

  5. V. A. Glukhov, Yu. A. Gol’din, G. V. Zhegulin, and M. A. Rodionov, “Integrated processing of lidar data from marine areas,” Fundam. Prikl. Gidrofiz. 15 (3), 27–42 (2022).

    Google Scholar 

  6. D. I. Glukhovets, S. V. Sheberstov, O. V. Kopelevich, et al., “Measuring the sea water absorption factor using integrating sphere,” Light Eng. 26, 120–126 (2018).

  7. Yu. A. Goldin, D. I. Glukhovets, B. A. Gureev, et al., “Shipboard flow-through complex for measuring bio-optical and hydrological seawater characteristics,” Oceanology 60 (5), 713–720 (2020).

    Article  ADS  CAS  Google Scholar 

  8. I. V. Goncharenko, V. V. Rostovtseva, and B. V. Konovalov, “Using a new ship-based passive optical sensing system to obtain the distribution of natural impurities in coastal waters,” Fundam. Prikl. Gidrofiz. 11 (3), 97–101 (2018).

    Google Scholar 

  9. A. B. Demidov, S. V. Sheberstov, V. I. Gagarin, and P. V. Khlebopashev, “Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea,” Oceanology 57 (1), 91–104 (2017).

    Article  ADS  Google Scholar 

  10. A. N. Drozdova, V. V. Pelevin, I. N. Krylov, et al., “Dissolved organic matter of the surface water layer of the Gelendzhik Bay in September 2021 according to fluorimetry and lidar measurements,” Oceanology 62 (6), 765–772 (2022).

    Article  ADS  CAS  Google Scholar 

  11. O. V. Kopelevich, “Low-parameter models of the optical properties of sea water,” in Ocean Optics, Vol. 1: Physical Optics of the Ocean (Nauka, Moscow, 1983), pp. 208–234.

  12. O. V. Kopelevich, V. I. Burenkov, S. V. Vazyulya, et al., “Problems of indicating coccolithophore blooms using satellite data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (5), 241–250 (2012).

    Google Scholar 

  13. O. V. Kopelevich and A. G. Kostyanoi, “Using ocean bio-optical parameters determined from satellite data as key climate variables,” Fundam. Prikl. Klimatol., No. 3, 8–29 (2018).

  14. O. V. Kopelevich, I. V. Sahling, S. V. Vazyulya, et al., Bio-optical characteristics of the seas, surrounding the western part of Russia, from data of the satellite ocean color scanners of 1998–2017 (Inst. Okeanol. Ross. Akad. Nauk, Moscow, 2018) [in Russian].

    Google Scholar 

  15. O. V. Kopelevich, S. V. Sheberstov, V. I. Burenkov, et al., “Estimation of volumetric absorption of solar radiation in the water column using satellite data,” Fundamental Research of Oceans and Seas (Nauka, Moscow, 2006), Part 1, pp. 109–126.

  16. M. D. Kravchishina, A. A. Klyuvitkin, A. N. Novigatskii, et al., “89th cruise of the Research Vessel Akademik Mstislav Keldysh: climate experiment in interaction with the Tu-134 Optic flying laboratoty”,Oceanology 63 (3), 428–431 (2023).

    Article  ADS  Google Scholar 

  17. A. A. Kucheiko, A. Yu. Ivanov, N. S. Grigor’ev, et al., “Sewage emissions in the coastal zone of the Black Sea: Observation and remote control from space,” Ekol. Prom-st’ Rossii 23 (12), 54–60 (2019).

    Google Scholar 

  18. O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al., Integrated Satellite Monitoring of Russian Seas (Inst. Kosm. Issled. Ross. Akad. Nauk, Moscow, 2011) [in Russian].

    Google Scholar 

  19. M. E. Li and O. V. Martynov, “Remote sensing reflectance meter for sub-satellite measurements of bio-optical water parameters,” in Ecological Safety of Coastal and Shelf Zones and Integrated Use of Shelf Resources (MHI NAN Ukrainy, Sevastopol, 2000), pp. 163–173.

    Google Scholar 

  20. M. E. Li, E. B. Shibanov, E. N. Korchemkina, O. V. Martynov, “Determination of the concentration of seawater components based on upwelling radiation spectrum Mor. Gidrofiz. Zh. 186 (6), 17–33 (2015).

    Google Scholar 

  21. S. I. Pogosyan, A. M. Durgaryan, I. V. Konyukhov, et al., “Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity,” Oceanology 49 (6), 866–871 (2009).

    Article  ADS  Google Scholar 

  22. M. V. Flint, S. G. Poyarkov, A. A. Polukhin, and A. Yu. Miroshnikov, “Ecosystems of Siberian Arctic seas–2022: Ecosystem of the eastern Kara Sea, ecological risks accumulated in the basin (cruise 89 of the R/V Akademik Mstislav Keldysh),” Oceanology 63 (2), 288–290 (2023).

    Article  ADS  Google Scholar 

  23. E. J. Arar and G. B. Collins, Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence (U.S. Environmental Protection Agency, 1997).

    Google Scholar 

  24. D. Blondeau-Patissier, J. F. Gower, A. G. Dekker, et al., “A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans,” Prog. Oceanogr. 123, 123–144 (2014).

    Article  ADS  Google Scholar 

  25. O. A. Bukin, A. N. Pavlov, M. S. Permyakov, et al., “Continuous measurements of chlorophyll-a concentration in the Pacific Ocean by shipborne laser fluorometer and radiometer: Comparison with SeaWiFS data,” Int. J. Remote Sens. 22 (2–3), 415–427 (2001).

    Article  Google Scholar 

  26. A. B. Demidov, O. V. Kopelevich, S. A. Mosharov, et al., “Modelling Kara Sea phytoplankton primary production: Development and skill assessment of regional algorithms,” J. Sea Res. 125, 1–7 (2017).

    Article  ADS  Google Scholar 

  27. M. J. Devlin, C. Petus, E. Da Silva, et al., “Water quality and river plume monitoring in the Great Barrier Reef: An overview of methods based on ocean colour satellite data,” Remote Sens. 7 (10), 12909–12941 (2015).

    Article  ADS  Google Scholar 

  28. D. I. Glukhovets and Y. A. Goldin, “Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data,” Oceanologia 62 (3), 364–373 (2022).

    Article  Google Scholar 

  29. D. Glukhovets, O. Kopelevich, A. Yushmanova, et al., “Evaluation of the CDOM absorption coefficient in the Arctic Seas based on Sentinel-3 OLCI data,” Remote Sens. 12 (19), 3210 (2020).

    Article  ADS  Google Scholar 

  30. H. R. Gordon, “Can the Lambert–Beer low be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34 (8), 1389–1409 (1989).

    Article  ADS  Google Scholar 

  31. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

  32. Z. Hu, D. Pan, X. He, and Y. Bai, “Diurnal variability of turbidity fronts observed by geostationary satellite ocean color remote sensing,” Remote Sens. 8 (2), 147 (2016).

    Article  ADS  Google Scholar 

  33. D. V. Kalinskaya and A. S. Papkova, “Why is it important to consider dust aerosol in the Sevastopol and Black Sea region during remote sensing tasks? A case study,” Remote Sens. 14, 1890 (2022).

    Article  ADS  Google Scholar 

  34. K. Korotenko, A. Osadchiev, and V. Melnikov, “Mesoscale eddies in the Black Sea and their impact on river plumes: Numerical modeling and satellite observations,” Remote Sens. 14 (17), 4149 (2022).

    Article  ADS  Google Scholar 

  35. A. A. Kubryakov and S. V. Stanichny, “Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation,” Deep-Sea Res. I 97, 80–91 (2015).

    Article  Google Scholar 

  36. Z. Lee, K. L. Carder, C. D. Mobley, et al., “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37 (27), 6329–6338 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. C. D. Mobley, The Oceanic Optics Book (International Ocean Colour Coordinating Group (IOCCG), 2022).

  38. M. A. Mograne, C. Jamet, H. Loisel, et al., “Evaluation of five atmospheric correction algorithms over French optically-complex waters for the Sentinel-3A OLCI Ocean Color Sensor,” Remote Sens. 11 (6), 668 (2019).

    Article  ADS  Google Scholar 

  39. J. L. Mueller, A. Morel, R. Frouin, et al., Radiometric Measurements and Data Analysis Protocols. In Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation (Goddard Space Flight Space Centre: Greenbelt, MD, 2003).

    Google Scholar 

  40. A. A. Osadchiev, A. S. Izhitskiy, P. O. Zavialov, et al., “Structure of the buoyant plume formed by Ob and Yenisei river discharge in the southern part of the Kara Sea during summer and autumn,” J. Geophys. Res.: Oceans 122 (7), 5916–5935 (2017).

    Article  ADS  Google Scholar 

  41. T. Platt and S. Sathyendranath, “Oceanic primary production: Estimation by remote sensing at local and regional scales,” Science 241 (4873), 1613–1620 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. K. G. Ruddick, K. Voss, E. Boss, et al., “A review of protocols for fiducial reference measurements of water-leaving radiance for validation of satellite remote-sensing data over water,” Remote Sens. 11 (19), 2198 (2019).

    Article  ADS  Google Scholar 

  43. P. A. Salyuk, I. E. Stepochkin, E. B. Sokolova, et al., “Developing and using empirical bio-optical algorithms in the western part of the Bering Sea in the late summer season,” Remote Sens. 14 (22), 5797 (2022).

    Article  ADS  Google Scholar 

  44. P. Shanmugam, “CAAS: An atmospheric correction algorithm for the remote sensing of complex waters,” Ann. Geophys. 30 (1), 203–220 (2012).

    Article  ADS  Google Scholar 

  45. P. J. Werdell, B. A. Franz, S. W. Bailey, et al., “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52 (10), 2019–2037 (2013).

    Article  ADS  PubMed  Google Scholar 

  46. X. Yu, Z. Lee, S. Shang, et al., “Estimating the water-leaving albedo from ocean color,” Remote Sens. Environ. 269, 112807 (2022).

    Article  Google Scholar 

  47. A. Zatsepin, A. Kubryakov, A. Aleskerova, et al., “Physical mechanisms of submesoscale eddies generation: Evidences from laboratory modeling and satellite data in the Black Sea,” Ocean Dyn. 69, 253–266 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the participants of the 88th cruise of the R/V “Akademik Mstislav Keldysh” A.V. Bulokhov and F.F. Vertey for help in creating the prototype of the device; D.N. Deryagin and I.A. Kruglinskiy for assistance with measurements; V.A. Artemyev, S.V. Vazyulya, A.V. Grigoriev, S.K. Klimenko, M.D. Kravchishina, I.V. Sahling, A.V. Fedorov, A.N. Khrapko, and A.V. Yushmanova for providing field data; S.V. Sheberstov and Yu.A. Goldin for helpful discussions; as well as the R/V “Ashamba” captain O.K. Stepanov for assistance in conducting research. The authors also thank the anonymous reviewer for his attentiveness and constructive comments.

Funding

Ship measurement data were obtained within the state task of the Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. FMWE-2021-0001). Data processing was supported by the Russian Science Foundation (project no. 21-77-10 059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pavlova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, M.A., Glukhovets, D.I. & Volodin, V.D. Deck Spectroradiometer for Measuring Remote Sensing Reflectance. Oceanology 63 (Suppl 1), S228–S237 (2023). https://doi.org/10.1134/S0001437023070147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437023070147

Keywords:

Navigation