Skip to main content
Log in

Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The observed evidence of the implementation of three different mechanisms of the submesoscale eddies generation in the Black Sea previously studied by the field research and laboratory modeling is presented. These mechanisms are the following: (1) horizontal shear instability of the surface current; (2) flow separation behind capes and peninsulas; (3) spatial heterogeneity of the wind blowing from the coast to the sea. The first mechanism is implemented both in the open sea and in the coastal zone. The other two operate in the coastal zone. It was found that with the implementation of each from these mechanisms an asymmetry in the formation of cyclonic and anticyclonic eddies arises. Particularly, as a result of the flow shear instability, cyclonic vortices are usually observed, anticyclones are formed only in the case of rather weak anticyclonic velocity shear. Due to the alongshore current separation behind capes and peninsulas, the anticyclonic eddies and even the chains of this kind of eddies are predominantly formed. The spatially inhomogeneous wind from the coast to the sea generates eddy dipoles with dominating anticyclones. The joint analysis of surface geostrophic currents calculated using satellite altimetry data, the wind velocity field over the sea (reanalysis data), and satellite images in the optical spectral range for various regions of the Black Sea confirmed the main results of laboratory experiments and field research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apel JR, Byrne HM, Proni JR, Charnell RL (1975) Observations of oceanic internal and surface waves from the earth resources technology satellite. J Geophys Res 80(6):865–881

    Article  Google Scholar 

  • Atadzhanova OA, Zimin AV, Romanenkov DA, Kozlov IE (2017) Satellite radar observations of small eddies in the White, Barents and Kara Seas. Phys Oceanogr (2):73–85. https://doi.org/10.22449/1573-160X-2017-2-75-83

  • Bosse A, Testor P, Mortier L, Prieur L, Taillandier V, d'Ortenzio F, Coppola L (2015) Spreading of Levantine intermediate waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders. J Geophys Res Oceans 120(3):1599–1622

    Article  Google Scholar 

  • Boubnov BM, Golitsyn GS (1995) Convection in rotating fluids. Kluwer Academic Publishers, Dordrecht 224 p

    Book  Google Scholar 

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008) Mesoscale to submesoscale transition in the California Current System. Part II: frontal processes. J Phys Oceanogr 38(1):44–64

    Article  Google Scholar 

  • Capuano TA, Speich S, Carton X, Blanke B (2018) Mesoscale and submesoscale processes in the Southeast Atlantic and their impact on the regional thermohaline structure. J Geophys Res Oceans 123(3):1937–1961

    Article  Google Scholar 

  • D'Asaro EA (1988) Generation of submesoscale vortices: a new mechanism. J Geophys Res Oceans 93(C6):6685–6693

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Delandmeter P, Lambrechts J, Marmorino GO, Legat V, Wolanski E, Remacle JF, Chen W, Deleersnijder E (2017) Submesoscale tidal eddies in the wake of coral islands and reefs: satellite data and numerical modelling. Ocean Dyn 67(7):897–913

    Article  Google Scholar 

  • Demyshev SG, Dymova OA (2013) Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone. Izv Atmos Oceanic Phys 49(6):603–610

    Article  Google Scholar 

  • Demyshev SG, Dymova OA (2018) Numerical analysis of the Black Sea currents and mesoscale eddies in 2006 and 2011. Ocean Dyn 68(10):1335–1352

    Article  Google Scholar 

  • DiGiacomo PM, Holt B (2001) Satellite observations of small coastal ocean eddies in the Southern California Bight. J Geophys Res Oceans 106(C10):22521–22543

    Article  Google Scholar 

  • Divinsky BV, Kuklev SB, Zatsepin AG, Chubarenko BV (2015) Simulation of submesoscale variability of currents in the Black Sea coastal zone. Oceanology 55(6):814–819

    Article  Google Scholar 

  • Dreschler-Fischer L, Lavrova O, Seppke B, Gade M, Bocharova T, Serebryany A, Bestmann O (2014) Detecting and tracking small scale eddies in the black sea and the Baltic Sea using high-resolution Radarsat-2 and TerraSAR-X imagery (DTeddie). In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp 1214–1217). IEEE

  • Dymova OA (2017) High-resolving simulation of the Black Sea circulation. Proceedings of the 13th International MEDCOAST Congress on Coastal and Marine Science, Engineering, Management and Conversation (MEDCOAST 2017) – Mellieha, Malta, 31 October - 4 November 2017. – Mediterranean Coastal Foundation, Dalyan, Mugla, Turkey, 2017. – v.2. – P. 1203–1213

  • Elkin DN, Zatsepin AG (2013) Laboratory investigation of a mechanism of periodic eddy formation behind capes in a coastal sea. Oceanology 53(1):24–35

    Article  Google Scholar 

  • Elkin DN, Zatsepin AG (2014) Laboratory study of a shear instability of an alongshore sea current. Oceanology 54(5):576–582

    Article  Google Scholar 

  • Elkin DN, Zatsepin AG (2015) Laboratory study of submesoscale eddy formation mechanisms at sea shelf. Processes in geomedia 4:20–27 (in Russian)

    Google Scholar 

  • Fedorov KN (1986) The physical nature and structure of oceanic fronts. In: Garrett C (ed) Coastal and Estuarine Studies, vol 19. Springer-Verlag, New York 333 p

    Google Scholar 

  • Fedorov KN, Ginzburg AI (1992) The near-surface layer of the ocean. VSP, Netherlands 257 p

    Google Scholar 

  • Flierl GR, McGillicuddy DJ (2002) Mesoscale and submesoscale physical-biological interactions. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) Biological-Physical Interactions in the Sea. The Sea, vol 12. John Wiley and Sons, Inc., New York, pp 113–185

  • Fore AG, Stiles BW, Chau AH, Williams BA, Dunbar RS, Rodríguez E (2014) Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans Geosci Remote Sens 52(1):51–59

    Article  Google Scholar 

  • Ginzburg AI, Kostianoy AG, Soloviev DM, Stanichny SV (2000) Remotely sensed coastal/deep-basin water exchange processes in the Black Sea surface layer. In: Halpern D (ed) Satellites, Oceanography and Society, vol 63. Elsevier Oceanography Series, pp 273–287. https://doi.org/10.1016/S0422-9894(00)80016-1

  • Ginzburg AI, Kostyanoy AG, Soloviev DM, Stanichny SV (2001) Satellite monitoring of eddies and jets in the northeastern Black Sea. Mapp Sci Remote Sens 38(1):21–35 Published online 15 May 2013

    Google Scholar 

  • Ginzburg AI, Kostianoy AG, Krivosheya VG, Nezlin NP, Soloviev DM, Stanichny SV, Yakubenko VG (2002) Mesoscale eddies and related processes in the northeastern Black Sea. J Mar Syst 32(1–3):71–90

    Article  Google Scholar 

  • Gula J, Molemaker MJ, McWilliams JC (2015) Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys Res Lett 42(10):4054–4062

    Article  Google Scholar 

  • Gula J, Molemaker MJ, McWilliams JC (2016) Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat Commun 7:12811

    Article  Google Scholar 

  • Gurova E, Chubarenko B (2012) Remote-sensing observations of coastal sub-mesoscale eddies in the South-Eastern Baltic. Oceanologia 54(4):631–654

    Article  Google Scholar 

  • Johnson JA (1963) The stability of shearing motion in a rotating fluid. Journal of Fluid Mechanics 17(3):337–352. https://doi.org/10.1017/S0022112063001385

    Article  Google Scholar 

  • Kamenkovich VM, Koshlyakov MN, Monin AS (eds) (1986) Synoptic eddies in the ocean, vol. 5. Springer Science & Business Media, p.444. https://doi.org/10.1007/978-94-009-4502-9

  • Karimova SS (2012) Statistical analysis of submesoscale eddies in the Baltic, Black and Caspian seas using satellite SAR images. Earth Observ Remote Sens 3:31–47

    Google Scholar 

  • Karimova SS, Lavrova OY, Solov’ev DM (2012) Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data. Izv Atmos Oceanic Phys 48(9):1006–1013

    Article  Google Scholar 

  • Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375

    Article  Google Scholar 

  • Korotaev GK, Saenko OA, Koblinsky CJ (2001) Satellite altimetry observations of the Black Sea level. J Geophys Res Oceans 106(C1):917–933

    Article  Google Scholar 

  • Korotaev G, Oguz T, Nikiforov A, Koblinsky C (2003) Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J Geophys Res Oceans 108(C4). https://doi.org/10.1029/2002JC001508

  • Kostianoy AG, Ginzburg AI, Lavrova OY, Mityagina MI (2018) Satellite Remote Sensing of Submesoscale Eddies in the Russian Seas. In: Velarde M, Tarakanov R, Marchenko A (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_24

    Chapter  Google Scholar 

  • Kubryakov AA, Stanichny SV (2011) Mean dynamic topography of the Black Sea, computed from altimetry, drifter measurements and hydrology data. Ocean Sci 7(6):745–753

    Article  Google Scholar 

  • Kubryakov AA, Stanichny SV (2013) Estimating the quality of the retrieval of the surface geostrophic circulation of the Black Sea by satellite altimetry data based on validation with drifting buoy measurements. Izv Atmos Oceanic Phys 49(9):930–938

    Article  Google Scholar 

  • Kubryakov AA, Stanichny SV (2015a) Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 55(1):56–67

    Article  Google Scholar 

  • Kubryakov AA, Stanichny SV (2015b) Dynamics of Batumi Anticyclone from the Satellite Measurements. Phys Oceanogr (2):59–68. https://doi.org/10.22449/1573-160X-2015-2-59-68

  • Kubryakov AA, Stanichny SV, Zatsepin AG, Kremenetskiy VV (2016) Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem. J Mar Syst 163:80–94

    Article  Google Scholar 

  • Kubryakov A, Plotnikov E, Stanichny S (2018a) Reconstructing large-and mesoscale dynamics in the Black Sea region from satellite imagery and altimetry data—a comparison of two methods. Remote Sens 10(2):239

    Article  Google Scholar 

  • Kubryakov AA, Bagaev AV, Stanichny SV, Belokopytov VN (2018b) Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data. Prog Oceanogr 167:44–63

    Article  Google Scholar 

  • Lapeyre G, Klein P, Hua BL (2006) Oceanic restratification forced by surface frontogenesis. J Phys Oceanogr 36(8):1577–1590

    Article  Google Scholar 

  • Latun VS (1990) Anticyclonic eddies in the Black Sea in the summer of 1984. Phys Oceanogr 1(4):279–286

    Google Scholar 

  • Lavrova OY, Kostianoy AG, Lebedev SA, Mityagina MI, Ginzburg AI, Sheremet NA (2011) Complex satellite monitoring of the Russian seas. Space Research Institute of RAS, Moscow. ISBN 978-5-9903101-1-7. (in Russian)

  • Lavrova O, Serebryany A, Bocharova T, Mityagina M (2012) Investigation of fine spatial structure of currents and submesoscale eddies based on satellite radar data and concurrent acoustic measurements. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012, vol 8532 . International Society for Optics and Photonics, p. 85320L. https://doi.org/10.1117/12.970482

  • Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P (2012) Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39:L14602. https://doi.org/10.1029/2012GL052756

    Article  Google Scholar 

  • Lévy M, Jahn O, Dutkiewicz S, Follows MJ (2014) Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. Limnol Oceanogr 4(1):67–84

    Article  Google Scholar 

  • Luo H, Bracco A, Cardona Y, McWilliams JC (2016) Submesoscale circulation in the northern Gulf of Mexico: surface processes and the impact of the freshwater river input. Ocean Model 101:68–82

    Article  Google Scholar 

  • Mahadevan A (2016) The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci 8:161–184

    Article  Google Scholar 

  • Manucharyan GE, Timmermans ML (2013) Generation and separation of mesoscale eddies from surface ocean fronts. J Phys Oceanogr 43(12):2545–2562

    Article  Google Scholar 

  • Maul GA, Gordon HR (1975) On the use of the earth resources technology satellite (LANDSAT-1) in optical oceanography. Remote Sens Environ 4:95–128

    Article  Google Scholar 

  • McWilliams JC (1985) Submesoscale, coherent vortices in the ocean. Rev Geophys 23(2):165–182

    Article  Google Scholar 

  • McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc Lond A Math Phys Sci 472(2189):20160117

    Article  Google Scholar 

  • McWilliams JC, Gula J, Molemaker MJ, Renault L, Shchepetkin AF (2015) Filament frontogenesis by boundary layer turbulence. J Phys Oceanogr 45(8):1988–2005

    Article  Google Scholar 

  • Mensa JA, Garraffo Z, Griffa A, Özgökmen TM, Haza A, Veneziani M (2013) Seasonality of the submesoscale dynamics in the Gulf stream region. Ocean Dyn 63(8):923–941

    Article  Google Scholar 

  • Mityagina MI, Lavrova OY, Karimova SS (2010) Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the North-Eastern Black Sea. Int J Remote Sens 31(17):4779–4790

    Article  Google Scholar 

  • Molemaker MJ, McWilliams JC, Dewar WK (2015) Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent. J Phys Oceanogr 45(3):613–629

    Article  Google Scholar 

  • Munk W, Armi L, Fischer K, Zachariasen F (2000) Spirals on the sea. Proc R Soc Lond 456:1217–1280

    Article  Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, McClain C (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res Oceans 103(C11):24937–24953

    Article  Google Scholar 

  • Oguz T, La Violette PE, Unluata U (1992) The upper layer circulation of the Black Sea: its variability as inferred from hydrographic and satellite observations. J Geophys Res Oceans 97(C8):12569–12584

    Article  Google Scholar 

  • Oguz T, Mourre B, Tintoré J (2017) Modulation of frontogenetic plankton production along a meandering jet by zonal wind forcing: an application to the Alboran Sea. J Geophys Res Oceans 122(8):6594–6610

    Article  Google Scholar 

  • Pascual A, Faugère Y, Larnicol G, Le Traon P-Y (2006) Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 33:L02611. https://doi.org/10.1029/2005GL024633

    Article  Google Scholar 

  • Ramachandran S, Tandon A, Mahadevan A (2013) Effect of subgrid-scale mixing on the evolution of forced submesoscale instabilities. Ocean Model 66:45–63

    Article  Google Scholar 

  • Robinson AR (1983) Overview and summary of eddy science. In: Eddies in marine science. Springer, Berlin, pp 3–15

  • Roullet G, Klein P (2010) Cyclone-anticyclone asymmetry in geophysical turbulence. Phys Rev Lett 104(21):218501

    Article  Google Scholar 

  • Stevenson RE (1974) Observations from Skylab of mesoscale turbulence in ocean currents. Nature 250:638–640

    Article  Google Scholar 

  • Su et al (2018) Ocean submesoscales as a key component of the global heat budget. Nat Commun 9:775. https://doi.org/10.1038/s41467-018-02983-w

    Article  Google Scholar 

  • Thomas LN, Tandon A, Mahadevan A (2008) Submesoscale processes and dynamics. Ocean modeling in an Eddying Regime. 177:17–38

  • Thompson AF, Lazar A, Buckingham C, Naveira Garabato AC, Damerell GM, Heywood KJ (2016) Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders. J Phys Oceanogr 46(4):1285–1307

    Article  Google Scholar 

  • Zalesny VB, Diansky NA, Fomin VV, Moshonkin SN, Demyshev SG (2012) Numerical model of the circulation of the Black Sea and the Sea of Azov. Russ J Numer Anal Math Model 27(1):95–112

    Article  Google Scholar 

  • Zalesnyi VB, Gusev AV, Agoshkov VI (2016) Modeling Black Sea circulation with high resolution in the coastal zone. Izv Atmos Oceanic Phys 52(3):277–293

    Article  Google Scholar 

  • Zatsepin AG, Ginzburg AI, Kostianoy AG, Kremenetskiy VV, Krivosheya VG, Stanichny SV, Poulain P-M (2003) Observations of Black Sea mesoscale eddies and associated horizontal mixing. J. Geophys. Res. 108:3246. https://doi.org/10.1029/2002JC001390

    Article  Google Scholar 

  • Zatsepin AG, Denisov ES, Emelyanov SV et al (2005) Effect of bottom slope and wind on the near-shore current in a rotating stratified fluid: laboratory modeling for the Black Sea. Oceanology 45(Suppl 1):S13–S26

    Google Scholar 

  • Zatsepin AG, Kremenetskiy VV, Ostrovskii AG, Baranov VI, Kondrashov AA, Korzh AO, Soloviev DM (2011) Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology 51(4):554–567

    Article  Google Scholar 

  • Zatsepin AG, Piotouh VB, Korzh AO, Kukleva ON, Soloviev DM (2012) Variability of currents in the coastal zone of the Black Sea from long-term measurements with a bottom mounted ADCP. Oceanology 52(5):579–592

    Article  Google Scholar 

  • Zatsepin AG, Ostrovskii AG, Kremenetskiy VV, Piotukh VB, Kuklev SB, Moskalenko LV, Podymov OI, Baranov VI, Korzh AO, Stanichny SV (2013) On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012. Izv Atmos Oceanic Phys 49(6):659–673

    Article  Google Scholar 

  • Zatsepin AG, Elkin DN, Korg AO et al (2016) On the influence of the current variability in the deep part of the Black Sea on the dynamics of the adjacent narrow north Caucasian shelf. Mar Hydrophys J 3:16–25

    Google Scholar 

  • Zavialov PO, Makkaveev PN, Konovalov BV, Osadchiev AA, Khlebopashev PV, Pelevin VV, Grabovskiy AB, Izhitskiy AS, Goncharenko IV, Soloviev DM, Polukhin AA (2014) Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea. Oceanology 54(3):265–280

    Article  Google Scholar 

  • Zhong Y, Bracco A (2013) Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J Geophys Res Oceans 118(10):5651–5668

    Article  Google Scholar 

  • Zhurbas VM, Zatsepin AG, Grigoreva YV et al (2004) Water circulation and characteristics of currents of different scales in the upper layer of the Black Sea from drifter data. Oceanology 44(1):30–43

    Google Scholar 

  • Zhurbas VM, Kuzmina NP, Lyzhkov DA (2017) Eddy formation behind a coastal cape in a flow generated by transient longshore wind (numerical experiment). Oceanology 57(3):350–359

    Article  Google Scholar 

Download references

Funding

This paper was prepared in the framework of the state assignment of FASO Russia (theme no. 0149-2018-0003) and supported in part by the RFBR grant 17-05-00799 a. The laboratory modeling was performed with the support of the RSF grant 14-50-00095. Detection of submesoscale eddies from satellite data and their analysis was supported by the RFBR grant 16-05-00264a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Zatsepin.

Additional information

Responsible Editor: Jacques Verron

This article is part of the Topical Collection on the International Conference “Vortices and coherent structures: from ocean to microfluids”, Vladivostok, Russia, 28-31 August 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zatsepin, A., Kubryakov, A., Aleskerova, A. et al. Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dynamics 69, 253–266 (2019). https://doi.org/10.1007/s10236-018-1239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-018-1239-4

Keywords

Navigation