Skip to main content
Log in

Sources of Bottom Sediments in the Eastern Part of East Siberian Sea (Reconstruction from Geochemical Data)

  • MARINE GEOLOGY
  • Published:
Oceanology Aims and scope

Abstract

Based on analytical materials obtained in 2008 an the expedition of the R/V Akademik M.A. Lavrentiev along a regional gas-geochemical profile stretching 550 km from Billings Cape towards the underwater Mendeleev Ridge, the formational features in the composition of bottom sediment (pelitic aleurites and aleuritic pelites) in the eastern part of the East Siberian Sea were reconstructed. It was found that the studied set of samples for the Cr/Th, Th/Co, La/Sc values, as well as Eu/Eu* and (Eu/Sm)N values, consists of two groups. The first group includes samples recovered at stations 70–350 of the gas-geochemical profile. The second group includes samples recovered at stations 370–560. On the (La/Yb)N–Eu/Eu* and (La/Yb)N–(Eu/Sm)N diagrams, the sample data points are concentrated in the overlap zone of the compositional areas of aleuritic–pelitic sediments of large rivers and rivers, fed mainly by the erosion products of sedimentary rocks. The distribution of the data points of bottom sediments on these diagrams, as well as on the (La/Yb)N–Th diagram, differs from the distribution of data points for the Neoproterozoic amphibolites, granitoids, and rhyolites of Wrangel Island; therefore, the latter most likely could not have been sources of fine-grained aluminosiliciclastic material. The samples of the first group are quite close to the surface sediments of the East Siberian Sea in their Eu/Eu* and (Eu/Sm)N values and a number of other parameters. In contrast, the samples of the second group are closer to the bottom sediments of the Chukchi Sea. Apparently, the bottom sediments northwest of Wrangel Island formed under the influence of currents carrying fine-grained aluminosilicoclastic material from the Chukchi Sea. West of Wrangel Island, sediment composition is controlled mainly by material coming from the western and central regions of the East Siberian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Classification of sediments in accordance with [37] and references therein.

  2. Since in many literary sources, information on the REE distribution in modern bottom sediments of the Russian Arctic seas and large rivers flowing into them is incomplete for various reasons, we [26] were forced to use not only the (La/Yb)N–Eu/Eu* diagram, but also, when analyzing the value of the Eu anomaly, its “substitute”—(Eu/Sm)N [8]. This was done in the present study.

  3. Hereinafter, everything is normalized to chondrite [64].

REFERENCES

  1. A. S. Astakhov, I. P. Semiletov, V. V. Sattarova, et al., “Rare earth elements in the bottom sediments of the East Arctic seas of Russia as indicators of terrigenous input,” Dokl. Earth Sci. 482, 1324–1327 (2018).

    Article  Google Scholar 

  2. Atlas of Oceans: The Arctic Ocean (Department of Navigation and Oceanography, Ministry of Defense of Russian Federation, Moscow, 1980) [in Russian].

  3. Biogeochemistry of Organic Matter in the Arctic Seas, Ed. by I. S. Gramberg (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  4. V. E. Verzhbitsky, S. D. Sokolov, and M. I. Tuchkova, “Present-day structure and stages of tectonic evolution of Wrangel Island, Russian eastern Arctic region,” Geotectonics 49, 165–192 (2015).

    Article  Google Scholar 

  5. A. A. Vetrov, I. P. Semiletov, O. V. Dudarev, et al., “Composition and genesis of the organic matter in the bottom sediments of the East Siberian Sea,” Geochem. Int. 46, 156–167 (2008).

    Article  Google Scholar 

  6. E. G. Vologina, I. A. Kalugin, A. V. Dar’in, et al., “Late Holocene sedimentation in active geological structure of the Chukchi Sea,” Geodin. Tektonofiz. 9 (1), 199–219 (2018). https://doi.org/10.5800/GT-2018-9-1-0345

    Article  Google Scholar 

  7. V. A. Drushchits and T. A. Sadchikova, “Late Cenozoic terrigenous sedimentation on the shelf of the Eastern Arctic,” in Proceedings of the VII All-Russian Lithological Conf. “Sedimentary Basins, Sedimentary and Post-Sedimentary Processes in Geological History” (Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2013), Vol. 1, pp. 280–282.

  8. A. V. Dubinin, Geochemistry of Rare Earth Elements in the Ocean (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  9. O. V. Dudarev, Doctoral Dissertation in Geology-Mineralogy (Pacific Oceanological Inst., Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 2016).

  10. O. V. Dudarev, A. N. Charkin, N. E. Shakhova, et al., Modern Lithomorphogenesis on the East Arctic Shelf of Russia (Tomsk State Univ., Tomsk, 2016) [in Russian].

    Google Scholar 

  11. Interpretation of Geochemical Data, Ed. by E. V. Sklyarov (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  12. V. V. Kalinenko, “Clay materials in sediments of the Arctic seas,” Litol. Polezn. Iskop., No. 4, 418–429 (2001).

  13. M. K. Kos’ko, V. V. Avdyunichev, V. G. Ganelin, et al., The Wrangler Island: Geological Structure, Minerageny, and Geoecology (VNIIOkeanologiya, St. Petersburg, 2003) [in Russian].

  14. M. A. Levitan, M. Vasner, D. Nyurnberg, and E. S. Shelekhova, “Average composition of associations of clay minerals in the surface layer of bottom sediments of the Arctic Ocean,” Dokl. Akad. Nauk 344, 364–366 (1995).

    Google Scholar 

  15. M. A. Levitan, Yu. A. Lavrushin, and R. Shtain, The History of Sedimentation in the Arctic Ocean and the Seas of the Subarctic during the Last 130 Thousand Years (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  16. A. P. Lisitsyn, Ice Sedimentation in the Seas and Oceans (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  17. A. V. Maslov, Sedimentary Rocks: Study Methods and Data Interpertation (Ural State Mining Univ., Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  18. A. V. Maslov, N. V. Kozina, A. A. Klyuvitkin, et al., “Rare-earth element distribution and 87Sr/86Sr systematics in modern bottom sediments of the Caspian Sea,” Dokl. Earth Sci. 459, 1418–1422 (2014).

    Article  Google Scholar 

  19. A. V. Maslov, N. V. Kozina, A. A. Klyuvitkin, et al., “Distribution of some rare and trace elements in modern bottom sediments of the Caspian Sea,” Oceanology (Engl. Transl.) 56, 552–563 (2016).

  20. A. V. Maslov, N. V. Kozina, V. P. Shevchenko, et al., “REE systematics in modern bottom sediments of the Caspian Sea and river deltas worldwide: experience of comparison,” Dokl. Earth Sci. 475, 797–802 (2017).

    Article  Google Scholar 

  21. A. V. Maslov, A. B. Kuznetsov, N. V. Politova, et al., “Isotopic composition of Nd, Pb, and Sr in modern bottom sediments of the Barents Sea,” Dokl. Earth Sci. 485, 268–272 (2019).

    Article  Google Scholar 

  22. A. V. Maslov, A. B. Kuznetsov, N. V. Politova, et al., “Distribution of trace and rare-earth elements, and Nd, Pb, and Sr isotopes in the surface sediments of the Barents Sea,” Geochem. Int. 58, 687–703 (2020).

    Article  Google Scholar 

  23. A. V. Maslov, O. Yu. Mel’nichuk, Yu. V. Titov, and M. V. Chervyakovskaya, “Reconstruction of the composition of the rocks of the feeding provinces, Part 2: Litho- and isotope-geochemical approaches and methods,” Litosfera 20 (1), 40–62 (2020).

    Google Scholar 

  24. A. V. Maslov, N. V. Politova, N. V. Kozina, et al., “Rare and trace elements in the modern bottom sediments of the Barents Sea,” Lithol. Miner. Resour. 55, 1–23 (2020).

    Article  Google Scholar 

  25. A. V. Maslov, N. V. Politova, V. P. Shevchenko, et al., “Co, Hf, Ce, Cr, Th, and REE charateristics of modern bottom sediments of the Barents Sea,” Dokl. Earth Sci. 485, 298–302 (2019).

    Article  Google Scholar 

  26. A. V. Maslov and V. P. Shevchenko, “REE–Th systematics of the suspended particulate matter and bottom sediments from the mouth zones of the world rivers of different categories/classes and some large Russian arctic rivers,” Geochem. Int. 57, 56–73 (2019).

    Article  Google Scholar 

  27. A. V. Maslov, V. P. Shevchenko, V. N. Podkovyrov, et al., “Specific features of the distribution of trace and rare earth elements in recent bottom sediments in the lower course of the Severnaya Dvina River and White Sea,” Lithol. Miner. Resour. 49, 433–460 (2014).

    Article  Google Scholar 

  28. A. V. Maslov, V. P. Shevchenko, Yu. L. Ronkin, et al., “Systematics of Th, Cr, Hf, Co, and rare-earth elements in modern bottom sediments of the white sea and lower reaches of the Severnaya Dvina River,” Dokl. Earth Sci. 443, 371–376 (2012).

    Article  Google Scholar 

  29. A. V. Maslov, S. I. Shkol’nik, E. F. Letnikova, et al., Limitations and Possibilities of Lithogeochemical and Isotope Methods in the Study of Sedimentary Strata (Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2018) [in Russian].

  30. A. Yu. Miroshnikov, M. V. Flint, En. E. Asadulin, et al., “Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea,” Oceanology (Engl. Transl.) 60, 518–531 (2020).

  31. N. A. Nikolaeva, A. N. Derkachev, and O. V. Dudarev, “Mineral composition of sediments from the Eastern Laptev Sea shelf and East Siberian Sea,” Oceanology (Engl. Transl.) 53, 472–480 (2013).

  32. E. V. Panova, A. S. Ruban, O. V. Dudarev, et al., “Lithological features of surface sediment and thier influence on organic matter distribution across the East Siberian Arctic shelf,” Izv. Tomsk. Politekh. Univ., Inzh. Georesur. 328 (8), 94–105 (2017).

    Google Scholar 

  33. E. A. Romankevich and A. A. Vetrov, Carbon Cycle in the Russian Arctic Seas (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  34. S. D. Sokolov, S. A. Silantyev, A. V. Moiseev, et al., “Amphibolites of the metamorphic basement of Wrangel Island: age, nature of the protolith, and conditions of metamorphism,” Geochem. Int. 57, 1249–1275 (2019).

    Article  Google Scholar 

  35. S. D. Sokolov, M. I. Tuchkova, A. V. Moiseev, et al., “Tectonic zoning of Wrangel Island, Arctic region,” Geotectonics 51, 3–16 (2017).

    Article  Google Scholar 

  36. A. N. Charkin, Candidate’s Dissertation in Geology-Mineralogy (Pacific Oceanological Inst., Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 2012).

  37. R. B. Shakirov, A. V. Sorochinskaya, and A. I. Obzhirov, “Some gas-geochemical features of the sediments of the East Siberian Sea,” Reg. Probl. 15 (1), 33–40 (2012).

    Google Scholar 

  38. R. B. Shakirov, A. V. Sorochinskaya, and A. I. Obzhirov, “Gas-geochemical anomalies in the sediments of the East Siberian Sea,” Vestn. Kamchat. Reg. Assots., Uch.-Nauchn. Tsentr, Nauki Zemle, No. 21, 98–110 (2013).

    Google Scholar 

  39. R. B. Shakirov, A. V. Sorochinskaya, A. I. Obzhirov, and N. V. Zarubina, “Gas-geochemical features of the sediments of the East Siberian Sea,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 6, 101–108 (2010).

    Google Scholar 

  40. D. S. Yashin, “Holocene sedimentogenesis of the Russian Arctic seas,” in Geological-Geophysical Characteristics of Lithosphere of the Arctic Region (VNIIOkeanologiya, St. Petersburg, 2000), No. 3, pp. 57–67.

  41. L. G. Anderson, G. Björk, S. Jutterstrom, et al., “East Siberian Sea, an Arctic region of very high biogeochemical activity,” Biogeosciences 8, 1745–1754 (2011). http://www.biogeosciences.net/8/1745/2011/. https://doi.org/10.5194/bg-8-1745-2011

    Article  Google Scholar 

  42. G. Bayon, S. Toucanne, C. Skonieczny, et al., “Rare earth elements and neodymium isotopes in world river sediments revisited,” Geochim. Cosmochim. Acta 170, 17–38 (2015).

    Article  Google Scholar 

  43. L. Bracciali, M. Marroni, L. Pandolfi, and S. Rocchi, “Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins,” in Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry, GSA Special Paper vol. 420 (Geological Society of America, Boulder, CO, 2007), pp. 73–93.

  44. G. A. Brennecka, A. D. Herrmann, T. J. Algeo, and A. D. Anbar, “Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction,” Proc. Natl. Acad. Sci. U.S.A. 108, 17631–17634 (2011).

    Article  Google Scholar 

  45. H.-J. Brumsack, “The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 232, 344–361 (2006).

    Article  Google Scholar 

  46. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  47. K. C. Condie and D. J. Wronkiewicz, “The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution,” Earth Planet. Sci. Lett. 97, 256–267 (1990).

    Article  Google Scholar 

  48. R. L. Cullers, “The control on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA,” Chem. Geol. 123, 107–131 (1995).

    Article  Google Scholar 

  49. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191, 305–327 (2002).

    Article  Google Scholar 

  50. C. M. Fedo, G. M. Young, and H. W. Nesbitt, “Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition,” Precambrian Res. 86, 201–223 (1997).

    Article  Google Scholar 

  51. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments, Ed. by D. R. Lentz (Geological Association of Canada, Ottawa, 2003).

    Google Scholar 

  52. M. V. Luchitskaya, A. V. Moiseev, S. D. Sokolov, et al., “Neoproterozoic granitoids and rhyolites of Wrangel Island: geochemical affinity and geodynamic setting in the Eastern Arctic region,” Lithos 292–293, 15–33 (2017).

    Article  Google Scholar 

  53. S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Rev. Miner. Geochem. vol. 21, Ed. by B. R. Lipin and G. A. McKay (De Gruyter, Berlin, 1989), Ch. 7, pp. 169–200.

  54. S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance and tectonics,” in Processes Controlling the Composition of Clastic Sediments, GSA Special Paper vol. 284 (Geological Society of America, Boulder, CO, 1993), pp. 21–40.

  55. S. M. McLennan and S. R. Taylor, “Sedimentary rocks and crustal evolution: tectonic setting and secular trends,” J. Geol. 99, 1–21 (1991).

    Article  Google Scholar 

  56. S. M. McLennan, S. R. Taylor, M. T. McCulloch, and J. B. Maynard, “Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations,” Geochim. Cosmochim. Acta 54, 2015–2050 (1990).

    Article  Google Scholar 

  57. J. McManus, W. Berelson, S. Severmann, et al., “Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential,” Geochim. Cosmochim. Acta 70, 4643–4662 (2006).

    Article  Google Scholar 

  58. J. L. Morford and S. Emerson, “The geochemistry of redox sensitive trace metals in sediments,” Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

    Article  Google Scholar 

  59. A. S. Naidu, J. S. Creager, and T. C. Mowatt, “Clay mineral dispersal patterns in the North Bering and Chukchi seas,” Mar. Geol. 47, 1–15 (1982).

    Article  Google Scholar 

  60. A. S. Naidu and T. C. Mowatt, “Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska,” Geol. Soc. Am. Bull. 94, 841–854 (1983).

    Article  Google Scholar 

  61. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Routledge, London, 1993).

    Google Scholar 

  62. R. L. Rudnick and S. Gao, “Composition of the continental crust, in Treatise of Geochemistry (Elsevier, Amsterdam, 2003), Vol. 4, Ch. 4.1, pp. 1–64.

    Google Scholar 

  63. J. A. Salvadó, T. Tesi, M. Sundbom, et al., “Contrasting composition of terrigenous organic matter in the dissolved, particulate and sedimentary organic carbonpools on the outer East Siberian Arctic Shelf,” Biogeosciences 13, 6121–6138 (2016).

    Article  Google Scholar 

  64. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell, Oxford, 1985).

    Google Scholar 

  65. S. R. Taylor and S. M. McLennan, “The chemical evolution of the continental crust,” Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  66. C. Viscosi-Shirley, N. Pisias, and K. Mammone, “Sediment source strength, transport pathways and accumulation patterns on the Siberian–Arctic’s Chukchi and Laptev shelves,” Cont. Shelf Res. 23, 1201–1225 (2003).

    Article  Google Scholar 

  67. M. Wahsner, C. Müller, R. Stein, et al., “Clay-mineral distribution in surface sediments of the Eurasian Arctic ocean and continental margin as indicator for source areas and transport pathways—a synthesis,” Boreas 28 (1), 215–233 (1999).

    Article  Google Scholar 

  68. B. Yu, H. Dong, E. Widom, J. Chen, and C. Lin, “Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history,” J. Asian Earth Sci. 34, 418–436 (2009).

    Article  Google Scholar 

  69. F. Zhang, X. Zhu, B. Yan, et al., “Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions,” Earth Planet. Sci. Lett. 429, 11–19 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is sincerely grateful to M.I. Tuchkova for help in searching the literature, M.D. Kravchishina and V.P. Shevchenko for consultations on a number of questions, and N.S. Glushkova for preparing illustrations for article.

Funding

The research was carried out within the framework of the state assignment of the GIN RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maslov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V. Sources of Bottom Sediments in the Eastern Part of East Siberian Sea (Reconstruction from Geochemical Data). Oceanology 61, 517–532 (2021). https://doi.org/10.1134/S000143702104010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143702104010X

Keywords:

Navigation