Skip to main content
Log in

Genetic Diversity of Copepod Limnocalanus macrurus from Russian Arctic Seas

  • MARINE BIOLOGY
  • Published:
Oceanology Aims and scope

Abstract

The diversity, phylogenetic relationships, and demographic history of glacial relict copepod Limnocalanus macrurus from estuaries of large Siberian Arctic rivers (the Ob, Khatanga, Lena, Indigirka, and Kolyma) are studied using mitochondrial cytochrome oxidase subunit I gene (COI mtDNA). It is shown that Siberian populations of Limnocalanus macrurus, together with those from the Canadian Arctic and Baltic Sea, belong to a single Palearctic phylogenetic lineage, which probably survived in one refugium during the Last Glacial Maximum and then rapidly expanded within the Arctic about 21 000–7500 years ago. The presence of common haplotypes in L. macrurus from three Arctic seas and the lack of differences in haplotype frequencies may be associated with recent origin of populations or current gene flow between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. G. Arashkevich, M. V. Flint, A. B. Nikishina, et al., “The role of zooplankton in the transformation of the organic matter in the Ob estuary, on the shelf, and in the deep regions of the Kara Sea,” Oceanology (Engl. Transl.) 50, 780–792 (2010).

    Article  Google Scholar 

  2. E. G. Arashkevich, A. V. Drits, A. F. Pasternak, et al., “Distribution and feeding of herbivorous zooplankton in the Laptev Sea,” Oceanology (Engl. Transl.) 58, 381–395 (2018).

    Article  Google Scholar 

  3. M. E. Vinogradov, E. A. Shushkina, L. P. Lebedeva, et al., “Mesoplankton of the eastern part of the Kara Sea and estuaries of Ob and Yenisei rivers,” Okeanologiya (Moscow) 34, 716–723 (1994).

    Google Scholar 

  4. A. V. Drits, A. B. Nikishina, T. N. Semenova, et al., “Spatial distribution and feeding of dominant zooplankton species in the Ob River estuary,” Oceanology (Engl. Transl.) 56, 382–394 (2016).

    Article  Google Scholar 

  5. M. V. Flint, T. N. Semenova, E. G. Arashkevich, et al., “Structure of the zooplankton communities in the region of the Ob River’s estuarine frontal zone,” Oceanology (Engl. Transl.) 50, 766–779 (2010).

    Article  Google Scholar 

  6. L. L. Chislenko, “Species composition and distribution of ecological complexes of zooplankton in the Yenisei Bay,” Issled. Fauny Morei 12, 228–238 (1972).

    Google Scholar 

  7. S. J. Adamowicz, S. Menu-Marcue, S. A. Halse, et al., “The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): A history of habitat shifts,” Mol. Phylogenet. Evol. 55, 418–430 (2010).

    Article  Google Scholar 

  8. J. April, R. H. Hanner, A.-M. Dion-Coté, and L. Bernatchez, “Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes,” Mol. Ecol. 22, 409–422 (2013).

    Article  Google Scholar 

  9. J. C. Avise, D. Walker, and G. C. Johns, “Speciation durations and Pleistocene effects on vertebrate phylogeography,” Proc. R. Soc. London, Ser. B 265, 1707–1712 (1998). https://doi.org/10.1098/rspb.0492

    Article  Google Scholar 

  10. Bernatchez L. and Wilson, C.C. “Comparative phylogeography of Nearctic and Palearctic fishes,” Mol. Ecol. 7, 431–452 (1998).

    Article  Google Scholar 

  11. T. E. Bowman and A. Long, “Relict populations of Drepanopus bungei and Limnocalanus macrurus grimaldii (Copepoda: Calanoida) from Ellesmere Island, N.W.T.,” Arctic 21, 173–180 (1973).

    Google Scholar 

  12. J. E. Buhay, “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies,” J. Crustacean Biol. 29, 96–110 (2009). https://doi.org/10.1651/08-3020.1

    Article  Google Scholar 

  13. E. D. Crandall, E. J. Sbrocco, T. S. DeBoer, et al., “Expansion dating: calibrating molecular clocks in marine species from expansions onto the Sunda shelf following the Last Glacial Maximum,” Mol. Biol. Evol. 29, 707–719 (2012).

    Article  Google Scholar 

  14. C. C. Caudill and A. Bucklin, “Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the northwest Atlantic coast,” Hydrobiologia 511, 91–102 (2004).

    Article  Google Scholar 

  15. J. Chappell, A. Omura, T. Esat, et al., “Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records,” Earth Planet Sci. Lett. 141, 227–236 (1996).

    Article  Google Scholar 

  16. R. T. Dooh, S. J. Adamowicz, and P. D. N. Hebert, “Comparative phylogeography of two North American ‘glacial relict’ crustaceans,” Mol. Ecol. 15, 4459–4475 (2006).

    Article  Google Scholar 

  17. A. V. Drits, A. F. Pasternak, A. B. Nikishina, et al., “The dominant copepods Senecella siberica and Limnocalanus macrurus in the Ob estuary: Ecology in a high-gradient environment,” Polar Biol. 39, 1527–1538 (2016).

    Article  Google Scholar 

  18. L. Excoffier, G. Laval, and S. Schneider, “Arlequin (version 3.0): An integrated software package for population genetics data analysis,” Evol. Bioinf. 1, 47–50 (2005).

    Article  Google Scholar 

  19. O. Folmer, M. Black, W. Hoeh, et al., “DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,” Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    Google Scholar 

  20. Y. X. Fu, “Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection,” Genetics 147, 915–925 (1997).

    Google Scholar 

  21. M. W. Gaunt and M. A. Miles, “An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks,” Mol. Biol. Evol. 19, 748–761 (2002).

    Article  Google Scholar 

  22. W. P. Goodall-Copestake, G. A. Tarling, and E. J. Murphy, “On the comparison of population-level estimates of haplotype and nucleotide diversity: A case study using the gene cox1 in animals,” Heredity 109, 50–56 (2012). https://doi.org/10.1038/hdy.2012.12

    Article  Google Scholar 

  23. W. S. Grant, “Problems and cautions with sequence mismatch analysis and bayesian skyline plots to infer historical demography,” J. Hered. 106, 333–346 (2015). https://doi.org/10.1093/jhered/esv020

    Article  Google Scholar 

  24. H. C. Harpending, “Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution,” Hum. Biol. 66, 591–600 (1994).

    Google Scholar 

  25. J. E. Havel and J. B. Shurin, “Mechanisms, effects, and scales of dispersal in freshwater zooplankton,” Limnol. Oceanogr. 49, 1229–1238 (2004).

    Article  Google Scholar 

  26. P. D. N. Hebert and B. J. Hann, “Patterns in the composition of arctic tundra pond microcrustacean communities,” Can. J. Fish. Aquat. Sci. 43, 1416–1425 (1986). https://doi.org/10.1139/f86-175

    Article  Google Scholar 

  27. G. M. Hewitt, “Genetic consequences of climatic oscillations in the Quaternary,” Philos. Trans. R. Soc., B 359, 183–195 (2004).

    Article  Google Scholar 

  28. H.-J. Hirche, I. Fetzer, M. Graeve, and G. Kattner, “Limnocalanus macrurus in the Kara Sea (Arctic Ocean): An opportunistic copepod as evident from distribution and lipid patterns,” Polar Biol. 26, 720–726 (2003). https://doi.org/10.1007/s00300-003-0541-9

    Article  Google Scholar 

  29. C. Holmquist, “The genus Limnocalanus (Crustacea, Copepoda),” Z. Zool. Syst. Evolutionsforsch. 8, 73–296 (1970).

    Article  Google Scholar 

  30. B. G. Holt, J.-P. Lessard, M. K. Borregaard, et al., “An update of Wallace’s zoogeographic regions of the World,” Science 339, 74–78 (2013). https://doi.org/10.1126/science.1228282

    Article  Google Scholar 

  31. M. Kearse, R. Moir, A. Wilson, et al., “Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data,” Bioinformatics 28 (12), 1647–1649 (2012).

    Article  Google Scholar 

  32. N. Knowlton and L. A. Weigt, “New dates and new rates for divergence across the Isthmus of Panama,” Proc. R. Soc. London, Ser. B 265, 2257–2263 (1998).

    Article  Google Scholar 

  33. K. Lambeck, T. M. Esat, and E. K. Potter, “Links between climate and sea levels for the past three million years,” Nature 419, 199–206 (2002).

    Article  Google Scholar 

  34. P. Librado and J. Rozas, “DnaSP v5: A software for comprehensive analysis of DNA polymorphism data,” Bioinformatics 25, 1451–1452 (2009).

    Article  Google Scholar 

  35. M. P. Miller, TFPGA Version 1.3: A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data (Northern Arizona University, Flagstaff, AZ, 1997), p. 30. http://www.marksgeneticsoftware.net/.

    Google Scholar 

  36. K. G. Miller, M. A. Kominz, J. V. Browning, et al., “The Phanerozoic record of global sea-level change,” Science 310, 1293–1298 (2005).

    Article  Google Scholar 

  37. K. L. Millette, S. Xu, J. D. S. Witt, and M. E. Cristescu, “Pleistocene-driven diversification in freshwater zooplankton: Genetic patterns of refugial isolation and postglacial recolonization in Leptodora kindtii (Crustacea, Cladocera),” Limnol. Oceanogr. 56, 1725–1736 (2011). https://doi.org/10.4319/lo.2011.56.5.1725

    Article  Google Scholar 

  38. P. J. Milligan, E. A. Stahl, N. V. Schizas, and J. T. Turner, “Phylogeography of the copepod Acartia hudsonica in estuaries of the northeastern United States,” Hydrobiologia 666, 155–165 (2011). https://doi.org/10.1007/s10750-010-0097-y

    Article  Google Scholar 

  39. B. J. Peterson, R. M. Holmes, J. W. McClelland, et al., “Increasing river discharge to the Arctic Ocean,” Science 298, 2171–2173 (2002).

    Article  Google Scholar 

  40. S. E. Ramos-Onsins and J. Rozas, “Statistical properties of new neutrality tests against population growth,” Mol. Biol Evol. 19, 2092–2100 (2002).

    Article  Google Scholar 

  41. N. Ray, M. Currat, and L. Excoffier, “Intra-deme molecular diversity in spatially expanding populations,” Mol. Biol. Evol. 20, 76–86 (2003).

    Article  Google Scholar 

  42. M. L. Raymond and F. Rousset, “An exact test for population differentiation,” Evolution 49, 1280–1283 (1995).

    Article  Google Scholar 

  43. K. E. Ricker, “The origin of two glacial relict crustaceans in North America, as related to Pleistocene glaciations,” Can. J. Zool. 37, 871–893 (1959).

    Article  Google Scholar 

  44. A. R. Rogers and H. Harpending, “Population growth makes waves in the distribution of pairwise genetic differences,” Mol. Biol. Evol. 9, 552–569 (1992).

    Google Scholar 

  45. J. C. Roff, “Aspects of the reproductive biology of the planktonic copepod Limnocalanus macrurus Sars,” Crustaceana (Leiden) 22, 155–160 (1972).

    Article  Google Scholar 

  46. J. C. Rolf and J. H. C. Carter, “Life cycle and seasonal abundance of the copepod Limnocalanus macrurus Sars in a high arctic lake,” Limnol. Oceanogr. 17, 363–370 (1972).

    Article  Google Scholar 

  47. L. Samchyshyna, L. A. Hansson, and K. S. Christoffersen, “Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history,” Polar Biol. 31, 1427–1435 (2008). https://doi.org/10.1007/s00300-008-0482-4

    Article  Google Scholar 

  48. C. D. Schubart, R. Diesel, and S. B. Hedges, “Rapid evolution to terrestrial life in Jamaican crabs,” Nature 393, 363–365 (1998). https://doi.org/10.1038/30724

    Article  Google Scholar 

  49. I. Spikkeland, B. Kinsten, G. Kjellberg, et al., “The aquatic-glacial relict fauna of Norway—an update of distribution and conservation status,” Fauna Norv. 36, 51 (2016). https://doi.org/10.5324/fn.v36i0.1994

    Article  Google Scholar 

  50. P. Taberlet, L. Fumagalli, A. G. Wust-Saucy, and J.‑F. Cossons, “Comparative phylogeography and postglacial colonization routes in Europe,” Mol. Ecol. 7, 453–464 (1998).

    Article  Google Scholar 

  51. F. Tajima, “Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism,” Genetics 123, 585–595 (1989).

    Google Scholar 

  52. P. van Hove, K. M. Swadling, J. A. E. Gibson, et al., “Farthest north lake and fjord populations of calanoid copepods Limnocalanus macrurus and Drepanopus bungei in the Canadian high Arctic,” Polar Biol. 24, 303–307 (2001).

    Article  Google Scholar 

Download references

Funding

Expeditionary work and primary processing of material was supported by the Russian Foundation for Basic Research, project no. 18-05-60 069, and state task no. 0149-2019-0008; laboratory analysis was performed within the framework of state assignment no. 0112-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gordeeva.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeeva, N.V., Drits, A.V. & Flint, M.V. Genetic Diversity of Copepod Limnocalanus macrurus from Russian Arctic Seas. Oceanology 59, 903–911 (2019). https://doi.org/10.1134/S0001437019060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437019060067

Keywords

Navigation