Skip to main content

Advertisement

Log in

Spectroscopic Techniques for Estimation of Physiological State of Blue-Green Algae after Weak External Action

  • INSTRUMENTS AND METHODS
  • Published:
Oceanology Aims and scope

Abstract—

Nowadays cyanobacterial blooms in open reservoirs and estuaries became one of the most important ecological problem. The optimal way to solve this problem is to develop innovative methods for controlling the number of bloom-forming cyanobacteria based on weak external actions, which have no serious consequences for the entire ecological system. A novel efficient technique for in vivo estimation of cyanobacterial viability for online ecological monitoring of the results of weak external actions was elaborated by using a combination of different spectroscopic methods. It has been shown that the results obtained by means of conventional spectrophotometry and fluorimetry for cyanobacterial culture as a whole and the data obtained by fluorescent microscopic spectroscopy applied to a single cell are strictly related.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. N. Voloshko, A. V. Pinevich, J. Kopecky, N. N. Titova, P. Hrouzek, and P. Zelik, “Water blooms and toxins produced by cyanobacteria in the lower Suzdalskoeskoe Lake (Saint-Petersburg, Russia),” Int. J. Algae 12 (2), 129–141 (2010).

    Article  Google Scholar 

  2. B. V. Gromov and N. N. Titova, “Collection of algae cultures of the Laboratory of Microbiology of Biological Institute of Leningrad State University,” in Culturing of Collection Algae Strains (Leningrad State Univ., Leningrad, 1983), pp. 3–27.

    Google Scholar 

  3. G. S. Karabashev, Fluorescence in the Ocean (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  4. D. Yu. Korneev, Information Possibilities in the Method of Fluorescence Induction of Chlorophyll (Al’terpres, Kyiv, 2002) [in Russian].

    Google Scholar 

  5. V. S. Lysenko, T. V. Varduni, V. G. Soier, and V. P. Kransov, “Chlorophyll fluorescence of plants as an indicator of environmental stress: the theoretical concept,” Fundam. Issled. 4, 112–120 (2013).

    Google Scholar 

  6. Manual for Physiological-Biochemical Hydrobiological Analysis of Algae (Naukova Dumka, Kiev, 1975) [in Russian].

  7. V. A. Rumyantsev, N. Yu. Grigoryeva, and L. V. Chistyakova, “Study of changes in the physiological state of cyanobacteria caused by weak ultrasonic treatment,” Dokl. Earth Sci. 475, 939–941 (2017).

    Article  Google Scholar 

  8. V. A. Rumyantsev, Sh. R. Pozdnyakov, V. N. Rybakin, N. Yu. Grigoryeva, I. V. Rudskii, E. Yu. Kiselev, and A. N. Korovin, “Multidisciplinary field and laboratory experiments to assess the effect of ultrasound on the regulation of flowering of cyanobacteria,” Uch. Zap. Ross. Gos. Gidrometeorol. Univ. 46, 118–133 (2017).

    Google Scholar 

  9. R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Wiley, New York, 2014).

    Google Scholar 

  10. The Molecular Biology of Cyanobacteria, Ed. by D. A. Bryant (Kluwer, Dordrecht, 1994).

    Google Scholar 

  11. M. R. Doosti, R. Kargar, and M. H. Sayadi, “Water treatment using ultrasonic assistance: A review,” Proc. Int. Acad. Ecol. Environ. Sci. 2 (2), 96–110 (2012).

    Google Scholar 

  12. K. Eilola, H. M. Meier, and E. Almroth, “On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; a model study,” J. Mar. Syst. 75 (1), 163–184 (2009).

    Article  Google Scholar 

  13. V. V. Fadeev, D. V. Maslov, D. N. Matorin, et al., “Some peculiarities of fluorescence diagnostics of phytoplankton in coastal waters of the Black Sea,” EARSeL eProc. 1, 205–213 (2000).

    Google Scholar 

  14. D. J. Franklin, R. L. Airs, M. Fernandes, et al., “Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism,” Limnol. Oceanogr. 57, 305–317 (2012).

    Article  Google Scholar 

  15. H. Hao, W. Wu, Y. Chen, et al., “Cyanobacterial bloom control by ultrasonic irradiation at 20 kHz and 1.7 MHz,” J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 39 (6), 1435–1446 (2004).

    Article  Google Scholar 

  16. J. Huisman, H. C. P. Matthijs, and P. M. Visser, Harmful Cyanobacteria (Springer-Verlag, Dordrecht, 2005).

    Book  Google Scholar 

  17. T. Jakob, U. Schreiber, V. Kirschesch, et al., “Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwave length excitation PAM chlorophyll fluorometry: performance and methodological limits,” Photosynth. Res. 83, 343–361 (2005).

    Article  Google Scholar 

  18. M. H. Mariné, E. Clavero, and M. Roldán, “Microscopy methods applied to research on cyanobacteria,” Limnetica 23 (1–2), 179–186 (2004).

    Google Scholar 

  19. J. R. Millan-Almaraz, R. G. Guevara-Gonzalez, R. Romero-Troncoso, et al., “Advantages and disadvantages on photosynthesis measurement techniques: a review,” Afr. J. Biotechnol. 8 (25), 7340–7349 (2009).

    Google Scholar 

  20. H. W. Paerl, “Marine plankton,” in Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer-Verlag, Dordrecht, 2012), pp. 127–153.

    Google Scholar 

  21. G. C. Papageorgiou, M. Tsimilli-Michael, and K. Stamatakis, “The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint,” Photosynth. Res. 94 (2–3), 275–290 (2007).

    Article  Google Scholar 

  22. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).

    Book  Google Scholar 

  23. Bioenergetic Processes of Cyanobacteria: From Evolutionary Singularity to Ecological Diversity, Ed. by G. A. Peschek, C. Obinger, and G. Renger (Springer-Verlag, Dordrecht, 2011).

    Google Scholar 

  24. D. Purcell, S. A. Parsons, B. Jefferson, et al., “Experiences of algal bloom control using green solutions barley straw and ultrasound, an industry perspective,” Water Environ. J. 27 (2), 148–156 (2013).

    Article  Google Scholar 

  25. P. Rajasekhar, L. Fan, T. Nguyen, and F. A. Roddick, “A review of the use of sonication to control cyanobacterial blooms,” Water Res. 46 (14), 4319–4329 (2012).

    Article  Google Scholar 

  26. M. Roldan, C. Ascaso, and J. Wierzchos, “Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert,” Appl. Environ. Microbiol. 80 (10), 2998–3006 (2014).

    Article  Google Scholar 

  27. U. Schreiber, U. Schliwa, and W. Bilger, “Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer,” Photosynth. Res. 10, 51–62 (1986).

    Article  Google Scholar 

  28. K. Schulze, D. A. Lopez, U. M. Tillich, and M. Frohme, “A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ,” BMC Biotechnol. 11, 11–18 (2011).

    Article  Google Scholar 

  29. D. J. Suggett, C. M. Moore, A. E. Hickman, and R. J. Geider, “Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state,” Mar. Ecol.: Progr. Ser. 376, 1–19 (2009).

    Article  Google Scholar 

  30. Ecology of Cyanobacteria II: Their Diversity in Space and Time, Ed. by B. A. Whitton (Springer-Verlag, Dordrecht, 2012).

    Google Scholar 

  31. E. Wolf and A. Schübler, “Phycobiliprotein fluorescence of Nostoc punctiforme changes during the life cycle and chromatic adaptation: characterization by spectral confocal laser scanning microscopy and spectral unmixing,” Plant, Cell Environ. 28 (4), 480–491 (2005).

    Article  Google Scholar 

  32. X. Wu, E. M. Joyce, and T. J. Mason, “The effects of ultrasound on cyanobacteria,” Harmful Algae 10 (6), 738–743 (2011).

    Article  Google Scholar 

  33. L. Ying, X. Huang, B. Huang, et al., “Fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells,” Photochem. Photobiol. 76, 310–313 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

All studies were carried out using the equipment of the Resource Center “Development of Molecular and Cell Technologies” of the Research Park of St. Petersburg State University and the “Chromas” Center. The authors individually thank the Resource Center core facility Center for Culture Collection of Microorganisms of the Research Park of St. Petersburg State University for providing samples of cyanobacteria strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Grigoryeva.

Additional information

Translated by G. Karabashev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryeva, N.Y., Chistyakova, L.V. & Liss, A.A. Spectroscopic Techniques for Estimation of Physiological State of Blue-Green Algae after Weak External Action. Oceanology 58, 923–931 (2018). https://doi.org/10.1134/S0001437018060061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018060061

Navigation