Skip to main content
Log in

Asymptotic Justification of Equations for von Kármán Membrane Shells

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The objective of this work is to study the asymptotic justification of the two- dimensional equations for membrane shells with boundary conditions of von Kármán’s type. More precisely, we consider a three-dimensional model for a nonlinearly elastic membrane shell of Saint Venant–Kirchhoff material, where only a portion of the lateral face is subjected to boundary conditions of von Kármán’s type. Using technics from formal asymptotic analysis with the thickness of the shell as a small parameter, we show that the scaled three-dimensional solution still leads to the so-called two-dimensional equations of von Kármán membrane shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. T. von Kármán, “Festigkeitsprobleme im Maschinenbau,” in Encyclopädie der Mathematischen Wissenschaften (Leipzig, 1910), Vol. IV/4, pp. 311–385 [in German].

    Google Scholar 

  2. K. Marguerre, “Zur Theorie der gekrümmten Platte großer Formänderung,” in Proc. V. Internat. Congr. Appl. Mech. (Cambridge, 1938), pp. 93–101 [in German].

    Google Scholar 

  3. P. G. Ciarlet, “A justification of the von Kármán equations,” Arch. Rational Mech. Anal. 73 (4), 349–389 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. G. Ciarlet and J. C. Paumier, “A justification of the Marguerre–von Kármán equations,” Comput. Mech. 1 (3), 177–202 (1986).

    Article  MATH  Google Scholar 

  5. P. G. Ciarlet, Theory of Plates, in Mathematical Elasticity (North-Holland, Amsterdam, 1997), Vol. II.

    MATH  Google Scholar 

  6. P. G. Ciarlet and L. Gratie, “From the classical to the generalized von Kármán and Marguerre–von Kármán equations,” Comput. Appl. Math. 190 (1-2), 470–486 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. I. Vorovich, Nonlinear Theory of Shallow Shells, in Applied Mathematical Sciences (Springer, New York, 1999), Vol. 133.

    MATH  Google Scholar 

  8. D. A. Chacha, A. Ghezal, and A. Bensayah, “Existence result for a dynamical equations of generalized Marguerre–von Kármán shallow shells,” J. Elasticity 111 (2), 265–283 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ghezal, “On the study of variational inequality of generalized Marguerre–von Kármán’s type via Leray–Schauder degree,” Topol. Methods Nonlinear Anal. 55 (1), 369–383 (2020).

    MathSciNet  MATH  Google Scholar 

  10. A. Ghezal and D. A. Chacha, “Asymptotic justification of dynamical equations for generalized Marguerre–von Kármán anisotropic shallow shells,” Appl. Anal. 96 (5), 741–759 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ghezal and D. A. Chacha, “Justification and solvability of dynamical contact problems for generalized Marguerre–von Kármán shallow shells,” ZAMM Z. Angew. Math. Mech. 98 (5), 749–780 (2018).

    Article  MathSciNet  Google Scholar 

  12. A. Bensayah, D. A. Chacha, and A. Ghezal, “Asymptotic modeling of Signorini problem with Coulomb friction for a linearly elastostatic shallow shell,” Mathematical Methods in the Applied Sciences 39 (6), 1410–1424 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. E. Mezabia, A. Ghezal, and D. A. Chacha, “Asymptotic analysis of frictional contact problem for piezoelectric shallow shell,” Quart. J. Mech. Appl. Math. 72 (4), 473–499 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. G. Ciarlet, Theory of Shells, in Mathematical Elasticity (North-Holland, Amsterdam, 1999), Vol. III.

    MATH  Google Scholar 

  15. B. Miara, “Nonlinearly elastic shell models: A formal asymptotic approach I. The membrane model,” Arch. Rational Mech. Anal. 142 (4), 331–353 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Genevey, “Remarks on nonlinear membrane shell problems,” Math. Mech. Solids 2 (2), 215–237 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Le Dret and A. Raoult, “The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,” J. Nonlinear Sci. 6 (1), 59–84 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Lods and B. Miara, “Nonlinearly elastic shell models: A formal asymptotic approach II. The flexural model,” Arch. Rational Mech. Anal. 142 (4), 355–374 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Friesecke, R. D. James, M. G. Mora, and S. Müller, “Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence,” C. R. Acad. Sci. Paris, Ser. I 336 (8), 697–702 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. G. Ciarlet and D. Coutand, “An existence theorem for nonlinearly elastic ’flexural’ shells,” J. Elasticity 50 (3), 261–277 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Lewicka, M. G. Mora, and M. R. Pakzad, “Shell theories arising as low energy \(\Gamma\)-limit of 3d nonlinear elasticity,” Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2), 253–295 (2010).

    MathSciNet  MATH  Google Scholar 

  22. M. Lewicka, M. G. Mora, and M. R. Pakzad, “The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells,” Arch. Rational Mech. Anal. 200 (3), 1023–1050 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Hornung and I. Velčić, “Derivation of a homogenized von-Kármán shell theory from 3D elasticity,” Annales de l’Institut Henri Poincaré C, Analyse non Linéaire 32 (5), 1039–1070 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Li and M. Chermisi, “The von Kármán theory for incompressible elastic shells,” Calc. Var. 48 (1-2), 185–209 (2012).

    Article  MATH  Google Scholar 

  25. A. Roychowdhury and A. Gupta, “Growth and non-metricity in Föppl–von Kármán shells,” J. Elasticity 140 (2), 337–348 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Qin and P. F. Yao, “The time-dependent von Kármán shell equation as a limit of three-dimensional nonlinear elasticity,” J. Syst. Sci. Complex. 34, 465–482 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity,” Arch. Rational Mech. Anal. 63 (4), 337–403 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Raoult, “Non-polyconvexity of the stored energy function of a Saint Venent–Kirchhoff material,” Aplikace Matematiky 31 (6), 417–419 (1986).

    MathSciNet  MATH  Google Scholar 

  29. P. G. Ciarlet, Three-Dimensional Elasticity, in Mathematical Elasticity (North-Holland, Amsterdam, 1988), Vol. I.

    MATH  Google Scholar 

  30. J. M. Ball, “Some open problems in elasticity,” in Geometry, Mechanics, and Dynamics (Springer, New York, 2002), pp. 3–59.

    Chapter  Google Scholar 

  31. R. Bunoiu, P. G. Ciarlet, and C. Mardare, “Existence theorem for a nonlinear elliptic shell model,” J. Elliptic Parabol. Equ. 1 (1), 31–48 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Mardare, “Nonlinear shell models of Kirchhoff–Love type: Existence theorem and comparison with Koiter’s model,” Acta Math. Appl. Sin. Engl. Ser. 35 (1), 3–27 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. P. G. Ciarlet, “An introduction to differential geometry with applications to elasticity,” J. Elasticity 78 (1-3), 1–215 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. G. A. Banica, “Justification of the Marguerre–von Kármán equations in curvilinear coordinates,” Asymptotic Analysis 19 (1), 35–55 (1999).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghezal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legougui, M., Ghezal, A. Asymptotic Justification of Equations for von Kármán Membrane Shells. Math Notes 114, 536–552 (2023). https://doi.org/10.1134/S0001434623090237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623090237

Keywords

Navigation