Skip to main content
Log in

On Estimates of Uniform Approximations by Rational Fourier–Chebyshev Integral Operators for a Certain Choice of Poles

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The rational Fourier–Chebyshev integral operator with specially chosen poles is considered on the closed interval \([-1,1]\). With the help of the previously obtained upper bound for the uniform approximations of the functions \(|x|^s\), \(s>0\), on the closed interval \([-1,1]\) by means of the method of rational approximation in use, an asymptotic representation of the corresponding majorant under some conditions on the poles of the approximating function is obtained. To solve this problem, a method has been developed that is based on the classical Laplace method of studying the asymptotic behavior of integrals. The case of modified “Newman parameters” is studied in detail. The values of these parameters are found for which the highest rate of uniform approximations is ensured. In this case, the orders of uniform rational approximations turn out to be higher than those for the corresponding polynomial analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bernstein, “Sur la meilleure approximation de \(|x|\) par des polynomes de degrés donnés,” Acta Math. 37 (1), 1–57 (1914).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. S. Varga and A. J. Carpenter, “On the Bernstein conjecture in approximation theory,” Constr. Approx. 1 (4), 333–348 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. I. Newman, “Rational approximation to \(|x|\),” Michigan Math. J. 11, 11–14 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. P. Bulanov, “Asymptotics for least deviation of \(|x|\) from rational functions,” Math. USSR-Sb. 5 (2), 275–290 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. S. Vyacheslavov, “On the uniform approximation of \(|x|\) by rational functions,” Dokl. Akad. Nauk SSSR 220 (3), 512–515 (1975).

    MathSciNet  MATH  Google Scholar 

  6. H. Stahl, “Best uniform rational approximation of \(|x|\) on \([-1,1]\),” Russian Acad. Sci. Sb. Math. 76 (2), 461–487 (1993).

    MathSciNet  MATH  Google Scholar 

  7. Serge Bernstein, “Sur la meilleure approximation de \(|x|^p\) par des polynômes de degrés très élevés,” Izv. Akad. Nauk SSSR Ser. Mat. 2 (2), 169–190 (1938).

    MATH  Google Scholar 

  8. S. Nikolsky, “On the best approximation in the mean to the function \(|a-x|^s\) by polynomials,” Izv. Akad. Nauk SSSR Ser. Mat. 11 (2), 139–180 (1947).

    MathSciNet  MATH  Google Scholar 

  9. R. A. Raitsin, “Asymptotic properties of uniform approximations of functions with algebraic singularities by partial sums of a Fourier-Chebyshev series,” Soviet Math. (Iz. VUZ) 24 (3), 44-48 (1980).

    MathSciNet  Google Scholar 

  10. M. I. Ganzburg, “The Bernstein constant and polynomial interpolation at the Chebyshev nodes,” J. Approx. Theory 119 (2), 193–213 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Revers, “On the asymptotics of polynomial interpolation to \(|x|^\alpha\) at the Chebyshev nodes,” J. Approx. Theory 165 (1), 70–82 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. A. Gonchar, “On the rapidity of rational approximation of continuous functions with characteristic singularities,” Math. USSR-Sb. 2 (4), 561–568 (1967).

    Article  Google Scholar 

  13. G. Freud and J. Szabados, “Rational approximation to \(x^\alpha\),” Acta Math. Acad. Sci. Hungar. 18 (4), 393–399 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Tzimbalario, “Rational approximation to \(x^\alpha\),” J. Approximation Theory 16 (2), 187–193 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Ganelius, “Rational approximation to \(x^\alpha\) on \([0,1]\),” Anal. Math. 5 (1), 19–33 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-E. Andersson, “Rational approximation to functions like \(x^\alpha\) in integral norms,” Anal. Math. 14 (1), 11–25 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. S. Vyacheslavov, “On the approximation of \(x^\alpha\) by rational functions,” Izv. Akad. Nauk SSSR Ser. Mat. 16 (1), 83–101 (1981).

    MathSciNet  MATH  Google Scholar 

  18. H. Stahl, “Best uniform rational approximation of \(x^\alpha\) on \([0,1]\),” Bull. Amer. Math. Soc. (N. S.) 28 (1), 116–122 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. A. Pekarskii, “Approximation to the function \(z^{\alpha}\) by rational fractions in a domain with zero external angle,” Math. Notes 91 (5), 714–724 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Takenaka, “On the orthogonal functions and a new formula of interpolations,” Japanese J. of Math. 2, 129–145 (1925).

    Article  MATH  Google Scholar 

  21. F. Malmquist, “Sur la détermination d’une classe de fonctions analytiques par leurs dans un ensemble donné de points,” in Compte Rendus Sixiéme Congrés Math. Scand (Kopenhagen, Denmark, 1925), pp. 253–259.

    Google Scholar 

  22. M. M. Dzhrbashyan, “On the theory of series of Fourier in terms of rational functions,” Izv. Akad. Nauk Arm. SSR, Fiz.-Mat. Estest. Tekh. Nauki 9 (7), 3–28 (1956).

    MathSciNet  Google Scholar 

  23. G. S. Kocharyan, “On approximation by rational functions in a complex domain,” Izv. Akad. Nauk Arm. SSR, Fiz.-Mat. Estest. Tekh. Nauki 11 (4), 53–77 (1958).

    MATH  Google Scholar 

  24. A. A. Kitbalyan, “Expansions in generalized trigonometric systems,” Izv. Akad. Nauk Arm. SSR, Fiz.-Mat. Estest. Tekh. Nauki 16 (6), 3–24 (1963).

    MathSciNet  Google Scholar 

  25. V. N. Rusak, Rational Functions as Approximation Apparatus (Beloruss. Gos. Univ., Minsk, 1979) [in Russian].

    Google Scholar 

  26. P. P. Petrushev and B. A. Popov, Rational Approximation of Real Functions (University Press, Cambridge, 1987).

    MATH  Google Scholar 

  27. Y. Rouba, P. Patseika, and K. Smatrytski, “On a system of rational Chebyshev–Markov fractions,” Anal. Math. 44 (1), 115–140 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. A. Rovba and P. G. Potseiko, “Approximation of the function \(|x|^s\) on the closed interval \([-1,1]\) by partial sums of the rational Fourier–Chebyshev series,” Vest. Grodzen. Un-ta 9 (3), 16–28 (2019).

    Google Scholar 

  29. Y. A. Rovba and P. G. Potseiko, “On rational approximation of Markov functions by partial sums of Fourier series on a Chebyshev-Markov system,” Math. Notes 108 (4), 566–578 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. A. Evgrafov, Asymptotic Estimates and Entire Functions (Dover Publications, Mineola, NY, 2020).

    MATH  Google Scholar 

  31. M. V. Fedoryuk, Asymptotics: Integrals and Series (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  32. E. A. Rovba, “One direct method in the rational approximation,” Dokl. Akad. Nauk BSSR 23 (11), 968–971 (1979).

    MathSciNet  MATH  Google Scholar 

  33. P. G. Potseiko and Y. A. Rovba, “Approximations on classes of Poisson integrals by Fourier–Chebyshev rational integral operators,” Sib. Math. J. 62 (2), 292–312 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Mir, Moscow, 1985).

    MATH  Google Scholar 

  35. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

Download references

Funding

This work was financially supported by the State Program of Scientific Research “Convergence 2020”, no. 20162269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Potseiko.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 876–894 https://doi.org/10.4213/mzm13621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potseiko, P.G., Rovba, Y.A. On Estimates of Uniform Approximations by Rational Fourier–Chebyshev Integral Operators for a Certain Choice of Poles. Math Notes 113, 815–830 (2023). https://doi.org/10.1134/S0001434623050231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623050231

Keywords

Navigation