Skip to main content
Log in

On the Growth of Birkhoff Sums over a Rotation of the Circle

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Even Poincaré had constructed an example which implies the existence of an irrational rotation of the circle and a function continuous on it with zero mean for which the Birkhoff sums at some points tend to infinity as the number of iterations grows. The strict ergodicity in this case is a natural constraint on the growth rate of Birkhoff sums: the sequence of Birkhoff means uniformly tends to zero on the circle. The paper shows that any prescribed admissible rate of growth of Birkhoff sums within the ergodic theorem can be realized, and the set of points at which the sums grow with a given speed is massive: it has the Hausdorff dimension one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. The existence of topologically transitive cylindrical mappings in a more general situation was studied in [5].

References

  1. H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle, (I)–(II),” Journal de Mathématiques Pures et Appliquées 7, 375–422 (1881); 8 251 (1882); “Sur les courbes définies par les équations différentielles (III–IV) ,” Journal de Mathématiques Pures et Appliquées (Ser. 4) 1, 167–244 (1885); “Sur les courbes définies par les équations différentielles (quatriéme partie) ,” (1886), Vol. 2, pp. 151–217.

    MATH  Google Scholar 

  2. H. Poincaré, “Sur les series trigonometriques,” Comptes rendus 101 (2), 1131–1134 (1885).

    MATH  Google Scholar 

  3. V. V. Kozlov, Methods of Qualitative Analysis in the Dynamics of a Rigid Body (Nauchno-Izdatel’skii Tsentr “Regulyarnaya i Khaoticheskaya Dinamika”, Izhevsk, 2000) [in Russian].

    MATH  Google Scholar 

  4. W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, in Amer. Math. Soc. Colloq. Publ. (Amer. Math. Soc., Providence, RI, 1955), Vol. 36.

    MATH  Google Scholar 

  5. E. A. Sidorov, “Topological transitivity of cylindrical cascades,” Math. Notes 14 (3), 810–816 (1973).

    Article  MATH  Google Scholar 

  6. A. V. Kochergin, “On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus,” Soviet Mathematics - Doklady 13 (4), 949–952 (1972).

    MATH  Google Scholar 

  7. V. V. Kozlov, “On a problem of Poincaré,” J. Appl. Math. Mech. 40 (2), 326–329 (1976).

    Article  MATH  Google Scholar 

  8. A. B. Krygin, “\(\omega\)-Limit sets of smooth cylindrical cascades,” Math. Notes 23 (6), 479–485 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  9. E. A. Sidorov, “Conditions for uniform Poisson stability of cylindrical systems,” Russian Math. Surveys 34 (6), 220–224 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Besicovitch, “A problem on topological transformations of the plane. II,” Proc. Cambridge Philos. Soc. 47, 38–45 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Fraczek and M. Lemańczyk, “On the Hausdorff dimension of the set of closed orbits for a cylindrical transformation,” Nonlinearity 23 (10), 2393–2422 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Kochergin, “Besicovitch cylindrical transformation with a Hölder function,” Math. Notes 99 (3), 382–389 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. V. Kochergin, “New examples of Besicovitch transitive cylindrical cascades,” Sb. Math. 209 (9), 1257–1272 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Dymek, Transitive Cylinder Flows Whose Set of Discrete Points Is of Full Hausdorff Dimension, arXiv: math. DS/1303.3099v1.

  15. N. G. Moshchevitin, “Distribution of values of linear functions and asymptotic behavior of trajectories of some dynamical systems,” Math. Notes, 58 (3), 948–959 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. B. Antonevich and Ali A. Shukur, “Estimations of the norm of the powers of the operator generated by irrational rotation,” Dokl. Nats. Akad. Nauk Belarusi 61 (1), 30–35 (2017).

    MathSciNet  MATH  Google Scholar 

  17. A. B. Antonevich, A. V. Kochergin, and A. A. Shukur, “Behaviour of Birkhoff sums generated by rotations of the circle,” Sb. Math. 213 (7), 891–924 (2022).

    Article  MathSciNet  Google Scholar 

  18. A. Ya. Khinchin, Continued Fractions (University of Chicago Press, Chicago, 1964).

    MATH  Google Scholar 

  19. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (Wiley, Hoboken, NJ, 2003).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kochergin.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 836–848 https://doi.org/10.4213/mzm13654.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochergin, A.V. On the Growth of Birkhoff Sums over a Rotation of the Circle. Math Notes 113, 784–793 (2023). https://doi.org/10.1134/S0001434623050206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623050206

Keywords

Navigation