Skip to main content
Log in

On Polynomials Defined by the Discrete Rodrigues Formula

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study polynomials given by the discrete Rodrigues formula, which generalizes a similar formula for Meixner polynomials. Such polynomials are associated with the theory of Diophantine approximations. The saddle point method is used to find the limit distribution of zeros of scaled polynomials. An answer is received in terms of a meromorphic function on a compact Riemann surface and is interpreted using the vector equilibrium problem of the logarithmic potential theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meixner, “Orthogonale Polynomsysteme mit Einer Besonderen Gestalt der Erzeugenden Funktion,” J. London Math. Soc. 9 (1), 6–13 (1934).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bateman and A. Erdélyi Higher Transcendental Functions (McGraw-Hill, New York–Toronto–London, 1955), Vol. 2.

    MATH  Google Scholar 

  3. V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures,” Sb. Math. 201 (10), 1539–1561 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. N. Sorokin and E. N. Cherednikova, “Meixner polynomials with variable weight,” Sovrem. Problemy Mat. i Mekh. 6 (1), 118–125 (2011).

    Google Scholar 

  5. V. N. Sorokin, On Asymptotic Modes of Joint Meixner Polynomials (2016) [in Russian]. Preprint: Keldysh Inst. Appl. Math., no. 46

    Google Scholar 

  6. V. N. Sorokin, Angelesco–Meixner Polynomials (2017) [in Russian]. Preprint: Keldysh Inst. Appl. Math., no. 27

    Google Scholar 

  7. V. N. Sorokin, “On multiple orthogonal polynomials for three Meixner measures,” Proc. Steklov Inst. Math. 298, 294–316 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. N. Sorokin, “Hermite–Padé approximants to the Weyl function and its derivative for discrete measures,” Sb. Math. 211 (10), 1486–1502 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. N. Sorokin, “Asymptotics of Hermite–Padé approximants of the first type for discrete Meixner measures,” Lobachevskii J. Math. 42, 2654–2667 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. D’yachenko and V. G. Lysov, On Multiple Discrete Orthogonal Polynomials on a Lattice with Shift (2018) [in Russian]. Preprint: Keldysh Inst. Appl. Math., no. 218

    Google Scholar 

  11. S. P. Suetin, “Two examples related to properties of discrete measures,” Math. Notes 110 (4), 578–582 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. N. Sorokin, “Multipoint Padé approximation of the psi function,” Math. Notes 110 (4), 571–577 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. A. Kandayan, “Multipoint Padé approximations of the beta function,” Math. Notes 85 (2), 176–189 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Kandayan and V. N. Sorokin, “Multipoint Hermite–Padé approximations for beta functions,” Math. Notes 87 (2), 204–217 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Kandayan and V. N. Sorokin, “Asymptotics of multipoint Hermite–Padé approximants of the first type for two beta functions,” Math. Notes 101 (6), 984–993 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Touchard, “Nombres exponentiels et nombres de Bernoulli,” Canadian J. Math. 8, 305–320 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Prevost, “A new proof of the irrationality of \(\zeta(2)\) and \(\zeta(3)\) using Padé approximants,” J. Comput. Appl. Math. 67 (2), 219–235 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Apery, “Irrationalité de \(\zeta(2)\) et \(\zeta(3)\),” Astérisque 61, 11–13 (1979).

    MATH  Google Scholar 

  19. V. N. Sorokin, “On the Zudilin–Rivoal theorem,” Math. Notes 81 (6), 817–826 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions,” Sb. Math. 188 (5), 671–696 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable,” Sb. Math. 187 (8), 1213–1228 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and rate of rational approximation of analytic functions,” Mat. Sb. 134(176) (3(11)), 306–352 (1987).

    MATH  Google Scholar 

  23. A. A. Gonchar, E. A. Rakhmanov, and S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the \(S\)-property of stationary compact sets,” Russian Math. Surv. 66 (6), 1015–1048 (2011).

    Article  MATH  Google Scholar 

  24. E. A. Rakhmanov, “Orthogonal polynomials and \(S\)-curves,” in Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2012), Vol. 578, pp. 195–239.

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the Moscow Center for Fundamental and Applied Mathematics, agreement with the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2022-283, and by the Russian Science Foundation under grant 19-71-30004 (Sec. 4 in this paper).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sorokin.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 423–439 https://doi.org/10.4213/mzm13590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, V.N. On Polynomials Defined by the Discrete Rodrigues Formula. Math Notes 113, 420–433 (2023). https://doi.org/10.1134/S0001434623030112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623030112

Keywords

Navigation