Skip to main content
Log in

On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schrödinger Operator

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The one-dimensional Schrödinger operator with potential growing at infinity and with a semiclassical small parameter is considered. We obtain estimates via powers of the small parameter for the remainder in the expansion of smooth sufficiently rapidly decaying functions in the exact and asymptotic eigenfunctions. For the asymptotic eigenfunctions, we use a global representation in the form of an Airy function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 3: Quantum Mechanics. Nonrelativistic Theory (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. V. P. Maslov, Théorie des perturbations et méthodes asymptotiques (Dunod, Paris, 1972).

    MATH  Google Scholar 

  3. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981).

    Book  MATH  Google Scholar 

  4. S. Yu. Slavyanov, Asymptotic Solutions of the One-Dimensional Schrödinger Equation (Amer. Math. Soc., Providence, RI, 1996).

    Book  MATH  Google Scholar 

  5. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems,” Theoret. and Math. Phys. 201 (3), 1742–1770 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Erdélyi, Asymptotic Expansions (Dover Publ., New York, 1956).

    MATH  Google Scholar 

  7. F. W. J. Olver, Asymptotics and Special Functions (Academic Press, New York–London, 1974).

    MATH  Google Scholar 

  8. M. Born and V. Fock, “Beweis des adiabaten Satzes,” Z. Phys. 51, 165–180 (1928).

    Article  MATH  Google Scholar 

  9. T. Kato, “On the adiabatic theorem of quantum mechanics,” J. Phys. Soc. Jpn. 5, 435–439 (1950).

    Article  Google Scholar 

  10. S. B. Kuksin and A. I. Neishtadt, “On quantum averaging, quantum KAM, and quantum diffusion,” Russian Math. Surveys 68 (2), 335–348 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Yu. Anikin, S. Yu. Dobrokhotov, and A. V. Tsvetkova, “Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states,” Theoret. and Math. Phys. 204 (2), 984–992 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  12. W. N. Everitt and M. Giertz, “Some properties of the domains of certain differential operators,” Proc. London Math. Soc. 23 (3), 301–324 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  13. W. N. Everitt and M. Giertz, “Some inequalities associated with certain differential operators,” Math. Z. 126, 308–326 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. N. Everitt and M. Giertz, “On some properties of the powers of a formally self-adjoint differential expression,” Proc. London Math. Soc. 24 (3), 149–170 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. N. Everitt and M. Giertz, “On some properties of the domains of powers of certain differential operators,” Proc. London Math. Soc. 24 (3), 756–768 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  17. E. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations (Oxford Univ. Press, Oxford, 1958).

    Book  MATH  Google Scholar 

  18. N. Dunford and J. T. Schwartz, Linear Operators, Vol. 2: Spectral Theory (Interscience Publ., New York, 1963).

    MATH  Google Scholar 

  19. J. Heading, An Introduction to Phase-Integral Methods (Methuen & Co., Ltd., John Wiley & Sons, Inc., London, New York, 1962).

    MATH  Google Scholar 

  20. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations (URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  21. B. Helffer and B. Robert, “Puits de potentiel généralisés et asymptotique semi-classique,” Ann. Inst. H. Poincaré Phys. Théor. 41 (3), 291–331 (1984).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The research in Sec. 3 was supported by the Russian Science Foundation under grant 20-11-20261, and the research in Sec. 4 was carried out under the Government program, contract no. AAAA-A20- 120011690131-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Anikin.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 644–664 https://doi.org/10.4213/mzm13670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikin, A.Y., Dobrokhotov, S.Y. & Shkalikov, A.A. On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schrödinger Operator. Math Notes 112, 623–641 (2022). https://doi.org/10.1134/S0001434622110013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622110013

Keywords

Navigation