Skip to main content
Log in

Covering a Set by a Convex Compactum: Error Estimates and Computation

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A problem related to that of finding the Chebyshev center of a compact convex set in \(\mathbb R^n\) is considered, namely, the problem of calculating the center and the least positive ratio of a homothety under which the image of a given compact convex set in \(\mathbb R^n\) covers another given compact convex set. Both sets are defined by their support functions. A solution algorithm is proposed which consists in discretizing the support functions on a grid of unit vectors and reducing the problem to a linear programming problem. The error of the solution is estimated in terms of the distance between the given set and its approximation in the Hausdorff metric. For the stability of the approximate solution, it is essential that the sets be uniformly convex and a certain set in the dual space has a nonempty interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Garkavi, “On the Chebyshev center and convex hull of a set,” Uspekhi Mat. Nauk 19 (6 (120)), 139–145 (1964).

    Google Scholar 

  2. A. R. Alimov and I. G. Tsar’kov, “Chebyshev centres, Jung constants, and their applications,” Russian Math. Surveys 74 (5), 775–849 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexey R. Alimov and Igor’ G. Tsar’kov, Geometric Approximation Theory (Springer, Cham, 2021).

    Book  MATH  Google Scholar 

  4. A. Beck and A. C. Eldar, “Regularization in regression with bounded noise: a Chebyshev center approach,” SIAM J. Matrix Anal. Appl. 29 (2), 606–625 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. Duzhi Wu, Jie Zhou, and Aiping Hu, “A new approximate algorithm for the Chebyshev center,” Automatica 49, 2483–2488 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Cerone, D. Piga, and D. Regruto, “Set-Membership Error-in-Variables Identification through Convex Relaxation Techniques,” IEEE Trans. Automat. Control 57 (2), 517–522 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. Sheng Xu and R. M. Freund, “Solution Methodologies for the Smallest Enclosing Circle Problem,” Comput. Optim. Appl. 25, 283–292 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Xia, M. Yang, and S. Wang, “Chebyshev center of the intersection of balls: complexity, relaxation and approximation,” Math. Program. Ser. A 187 (1-2), 287–315 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Milanese and R. Tempo, “Optimal algorithms theory for robust estimation and prediction,” IEEE Trans. Automat. Control 30 (8), 730–738 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. D. Botkin and V. L. Turova-Botkina, “An algorithm for finding the Chebyshev center of a convex polyhedron,” Appl. Math. Optim. 29, 211–222 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. I. Dudov and A. S. Dudova, “On the stability of inner and outer approximations of a convex compact set by a ball,” Comput. Math. Math. Phys. 47 (10), 1589–1602 (2007).

    Article  Google Scholar 

  12. V. V. Abramova, S. I. Dudov, and M. A. Osiptsev, “The external estimate of the compact set by Lebesgue set of the convex function,” Izv. Saratov Univ. Math. Mech. Inform. 20 (2), 142–153 (2020).

    Article  MATH  Google Scholar 

  13. S. I. Dudov, “Systematization of problems on ball estimates of a convex compactum,” Sb. Math. 206 (9), 1260–1280 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. V. Balashov, “Approximate calculation of the Chebyshev center for a convex compact set in \(\mathbb R^n\),” J. Convex Anal. 29 (1), 157–164 (2022).

    MathSciNet  MATH  Google Scholar 

  15. M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations,” Optim. Lett. 2021 (2021), https://doi.org/10.1007/s11590-021-01823-z.

    Google Scholar 

  16. Z. Xu, Y. Xia, and J. Wang, “Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension,” J. Global Opt. 80, 341–356 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Danzer, B. Grünbaum, and V. Klee, Helly’s Theorem and Its Relatives (Amer. Math. Soc., Providence, RI, 1963).

    Book  MATH  Google Scholar 

  18. J. Diestel, Geometry of Banach spaces—Selected Topics (Springer- Verlag, Berlin, 1975).

    Book  MATH  Google Scholar 

  19. E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  20. M. V. Balashov and E. S. Polovinkin, “\(M\)-strongly convex subsets and their generating sets,” Sb. Math. 191 (1), 25–60 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. S. Polovinkin, “Strongly convex analysis,” Sb. Math. 187 (2), 259–286 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. V. Balashov, “On polyhedral approximations in an \(n\)-dimensional space,” Comput. Math. Math. Phys. 56 (10), 1679–1685 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. V. Balashov and D. Repovš, “Polyhedral approximations of strictly convex compacta,” J. Math. Anal. Appl. 374, 529–537 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. M. Gruber, “Approximation of convex bodies,” in Convexity and Its Applications (Birkhäuser, Basel, 1983), pp. 131–162.

    Chapter  Google Scholar 

  25. D. Rosca, “New uniform grids on the sphere,” Astron. Astrophys. 520, A63 (2010).

    Article  Google Scholar 

  26. D. Rosca and G. Plonka, “Uniform spherical grids via equal area projection from the cube to the sphere,” J. Comput. Appl. Math. 236 (3), 1033–1041 (2011).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the referee for many valuable suggestions and comments, which helped to substantially improve the paper.

Funding

This work was supported by the Russian Science Foundation under grant 22-11-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Balashov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 337–349 https://doi.org/10.4213/mzm13537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashov, M.V. Covering a Set by a Convex Compactum: Error Estimates and Computation. Math Notes 112, 349–359 (2022). https://doi.org/10.1134/S0001434622090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090024

Keywords

Navigation