Skip to main content
Log in

Chebyshev center of the intersection of balls: complexity, relaxation and approximation

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the n-dimensional problem of finding the smallest ball enclosing the intersection of p given balls, the so-called Chebyshev center problem (\({\mathrm{CC}}_{\mathrm{B}}\)). It is a minimax optimization problem and the inner maximization is a uniform quadratic optimization problem (\(\mathrm{UQ}\)). When \(p\le n\), (\(\mathrm{UQ}\)) is known to enjoy a strong duality and consequently (\({\mathrm{CC}}_{\mathrm{B}}\)) is solved via a standard convex quadratic programming (\(\mathrm{SQP}\)). In this paper, we first prove that (\({\mathrm{CC}}_{\mathrm{B}}\)) is NP-hard and the special case when \(n=2\) is polynomially solvable. With the help of a newly introduced linear programming relaxation (LP), the (\(\mathrm{SQP}\)) relaxation is reobtained more directly and the first approximation bound for the solution obtained by (\(\mathrm{SQP}\)) is established for the hard case \(p>n\). Finally, also based on (LP), we show that (\({\mathrm{CC}}_{\mathrm{B}}\)) is polynomially solvable when either n or \(p-n(>0)\) is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A set \(\varOmega \) is balanced if \(x\in \varOmega \) implies \(-x\in \varOmega \).

  2. Limited-memory BFGS is a practical quasi-Newton method that uses a limited amount of computer memory to approximate the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

  3. There are algorithms converging to the square root at least quadratically, for example, Newton’s method. In practice, \(O(\log \log u^{-1})\) can be already regarded as a constant.

  4. Consider two circles sharing the same chord. It is not difficult to verify that the minor arc of the larger circle corresponding to the given chord is covered by the smaller circle.

References

  1. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17(3), 844–860 (2006)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Eldar, Y.C.: Regularization in regression with bounded noise: a Chebyshev center approach. SIAM J. Matrix Anal. Appl. 29(2), 606–625 (2007)

    Article  MathSciNet  Google Scholar 

  3. Beck, A.: On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls. J. Global Optim. 39(1), 113–126 (2007)

    Article  MathSciNet  Google Scholar 

  4. Beck, A.: Convexity properties associated with nonconvex quadratic matrix functions and applications to quadratic programming. J. Optim. Theory Appl. 142(1), 1–29 (2009)

    Article  MathSciNet  Google Scholar 

  5. Belykh, T.I., Bulatov, V.P., Yas’kova, E.N.: Methods of Chebyshev points of convex sets and their applications. Comput. Math. Math. Phys. 48(1), 16–29 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  7. Bogdewicz, A., Moszyńska, M.: Čebyšev sets in the space of convex bodies. Rend. Circ. Mat. Palermo 2(Suppl. 77), 19–39 (2006)

    MATH  Google Scholar 

  8. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  9. Bubeck, S., Lee, Y.T., Singh, M.: A geometric alternative to Nesterov’s accelerated gradient descent. arXiv:1506.08187v1 (2015)

  10. Bienstock, D., Michalka, A.: Polynomial solvability of variants of the trust-region subproblem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 380–390 (2014)

  11. Celis, M.R., Dennis, J.E., Tapia, R.A.: A trust region strategyfor nonlinear equality constrained optimization. In: Numerical Optimization, 1984 (Boulder, Colo., 1984), pp. 71–82. SIAM, Philadelphia (1985)

  12. Cen, X., Xia, Y., Gao, Y., Yang, T.: On Chebyshev center of the intersection of two ellipsoids. World congress on global optimization (WCGO) 2019. In: Le Thi, H.A., et al. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, AISC, vol. 991, pp. 135–144. Springer, Berlin (2020)

    Chapter  Google Scholar 

  13. Eldar, Y.C., Beck, A., Teboulle, M.: A minimax Chebyshev estimator for bounded error estimation. IEEE Trans. Signal Process. 56(4), 1388–1397 (2008)

    Article  MathSciNet  Google Scholar 

  14. Elzinga, J., Hearn, D.: The minimum sphere covering a convex polyhedron. Nav. Res. Logistic Q. 21, 715–718 (1974)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  16. Gholami, M.R., Wymeersch, H., Ström, E.G., Rydström, M.: Wireless network positioning as a convex feasibility problem. EURASIP J. Wirel. Commun. Netw. 1, 161 (2011)

    Article  Google Scholar 

  17. Gholami, M.R., Ström, E.G., Wymeersc, H., Rydström, M.: On geometric upper bounds for positioning algorithms in wireless sensor networks. Signal Process. 111, 179–193 (2015)

    Article  Google Scholar 

  18. Henrion, D., Tarbouriech, S., Arzelier, D.: LMI approximations for the radius of the intersection of ellipsoids: survey. J. Optim. Theory Appl. 108, 1–28 (2001)

    Article  MathSciNet  Google Scholar 

  19. Hsia, Y., Wang, S., Xu, Z.: Improved semidefinite approximation bounds for nonconvex nonhomogeneous quadratic optimization with ellipsoid constraints. Oper. Res. Lett. 43(4), 378–383 (2015)

    Article  MathSciNet  Google Scholar 

  20. Megiddo, N.: Linear-time algorithms for linear programming in \({\mathbb{R}}^3\) and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MathSciNet  Google Scholar 

  21. Milanese, M., Tempo, R.: Optimal algorithms theory for robust estimation and prediction. IEEE Trans. Autom. Control. 30(8), 730–738 (1985)

    Article  MathSciNet  Google Scholar 

  22. Nenakhov, E.I., Primak, M.E.: Convergence of the method of Chebyshev centers and some applications. Cybern. Syst. Anal. 22(2), 219–226 (1986)

    Article  MathSciNet  Google Scholar 

  23. Nesterov, Y.: Introductory Lectures on Convex Optimizaiton: A Basic Course of Applied Optimization, vol. 87. Kluwer, Boston (2004)

    Book  Google Scholar 

  24. Shor, N.Z.: Quadatric optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    Google Scholar 

  25. Sylvester, J.J.: A question in the geometry of situation. Q. J. Math. 1, 79 (1857)

    Google Scholar 

  26. Tseng, P.: Further results on approximating nonconvex quadratic optimization by semidefinite programming relaxation. SIAM J. Optim. 14, 268–283 (2003)

    Article  MathSciNet  Google Scholar 

  27. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  28. Wu, D., Zhou, J., HU, A.: A new approximate algorithm for the Chebyshev center. Automatica 49, 2483–2488 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the associated editor and two anonymous referees for very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by National Science Fund for Excellent Young Scholars under Grants 11822103, National Natural Science Foundation of China under Grants 11801173, 11571029, 11771056 and Beijing Natural Science Foundation Z180005.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Yang, M. & Wang, S. Chebyshev center of the intersection of balls: complexity, relaxation and approximation. Math. Program. 187, 287–315 (2021). https://doi.org/10.1007/s10107-020-01479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01479-0

Keywords

Mathematics Subject Classification

Navigation