Skip to main content
Log in

Solvability and Blow-Up of Weak Solutions of Cauchy Problems for \((3+1)\)-Dimensional Equations of Drift Waves in a Plasma

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, two Cauchy problems that contain different nonlinearities \(|u|^q\) and \((\partial/\partial t)|u|^q\) are studied. The differential operator in these problems is the same. It is defined by the formula \(\mathfrak{M}_{x,t}:=(\partial^2/\partial t^2)\Delta_{\perp}+ \partial^2/\partial x_3^2\). The problems have a concrete physical meaning, namely, they describe drift waves in a magnetically active plasma. Conditions are found under which weak generalized solutions of these Cauchy problems exist and also under which weak solutions of the same Cauchy problems blow up. However, the question of the uniqueness of weak generalized solutions of Cauchy problems remains open, because uniqueness conditions have not been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Korpusov and R. S. Shafir, “On the blow-up of weak solutions of the Cauchy problem for \((3+1)\)-dimensional equation of drift waves in a plasma,” J. Vychisl. Mat. Mat. Fiz. 62 (1), 124–158 (2022).

    MATH  Google Scholar 

  2. A. B. Al’shin, M. O. Korpusov and A. G. Sveshnikov, Blow-Up in Nonlinear Sobolev-Type Equations, in De Gruyter Ser. Nonlinear Anal. Appl. (Walter de Gruyter, Berlin, 2011), Vol. 15.

    Book  Google Scholar 

  3. G. A. Sviridyuk, “On the general theory of operator semigroups,” Russian Math. Surveys 49 (4), 45–74 (1994).

    Article  MathSciNet  Google Scholar 

  4. S. A. Zagrebina, “An initial-end problem for Sobolev-type equations with a strong \((L,p)\)-radial operator,” Mat. Zametki YaGU 19 (2), 39–48 (2012).

    MathSciNet  MATH  Google Scholar 

  5. A. A. Zamyshlyaeva and G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order,” Vestn. Yuzhno-Ural. Gos. Univ. Ser. Matem. Mekh. Fiz. 8 (4), 5–16 (2016).

    MATH  Google Scholar 

  6. B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid,” Math. USSR-Sb. 37 (4), 559–579 (1980).

    Article  Google Scholar 

  7. S. A. Gabov and A. G. Sveshnikov, Linear Problems in the Theory of Unsteady Internal Waves (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  8. S. A. Gabov, New Problems in the Mathematical Theory of Waves (Fizmatlit, Moscow, 1998) [in Russian].

    Google Scholar 

  9. Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary-value problems,” Comput. Math. Math. Phys. 32 (12), 1715–1728 (1992).

    MathSciNet  Google Scholar 

  10. E. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities,” Proc. Steklov Inst. Math. 234, 1–362 (2001).

    MATH  Google Scholar 

  11. E. I. Galakhov, “Some nonexistence results for quasilinear elliptic problems,” J. Math. Anal. Appl. 252 (1), 256–277 (2000).

    Article  MathSciNet  Google Scholar 

  12. E. I. Galakhov and O. A. Salieva, “On absence of nonnegative monotone solutions for some coercive inequalities in a half-space,” in Differential and Functional Differential Equations, CMFD (2017), Vol. 63, pp. 573–585.

    Google Scholar 

  13. M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type,” Izv. Math. 79 (5), 955–1012 (2015).

    Article  MathSciNet  Google Scholar 

  14. M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type,” Theoret. and Math. Phys. 194 (3), 347–359 (2018).

    Article  MathSciNet  Google Scholar 

  15. M. O. Korpusov, A. V. Ovchinnikov, and A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field,” Math. Methods Appl. Sci. 41 (17), 8070–8099 (2018).

    Article  MathSciNet  Google Scholar 

  16. M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Unsteady waves in anisotropic dispersive media,” Comput. Math. Math. Phys. 39 (6) (1999).

    MATH  Google Scholar 

  17. V. R. Kudashev, A. B. Mikhailovskii, and S. E. Sharapov, “On a nonlinear theory of drift mode induced by toroidality,” Fiz. Plazmy 13 (4), 417–421 (1987).

    Google Scholar 

  18. F. F. Kamenets, V. P. Lakhin, and A. B. Mikhailovskii, “Nonlinear electronic gradient waves,” Fiz. Plazmy 13 (4), 412–416 (1987).

    Google Scholar 

  19. A. P. Sitenko and P. P. Sosenko, “On short-wave convective turbulence and anomalous electronic thermal conductivity of plasma,” Fiz. Plazmy 13 (4), 456–462 (1987).

    Google Scholar 

  20. A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation,” Math. Notes 97 (6), 892–908 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shafir.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 111, pp. 459-475 https://doi.org/10.4213/mzm13256.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafir, R.S. Solvability and Blow-Up of Weak Solutions of Cauchy Problems for \((3+1)\)-Dimensional Equations of Drift Waves in a Plasma. Math Notes 111, 484–497 (2022). https://doi.org/10.1134/S0001434622030166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622030166

Keywords

Navigation