Skip to main content
Log in

Blow-up of Weak Solutions of the Cauchy Problem for (3+1)-Dimensional Equation of Plasma Drift Waves

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Cauchy problem for a new equation describing drift waves in a magnetoactive plasma is considered. The existence and uniqueness of a local-in-time weak solution of the Cauchy problem are proved. The considered equation contains the power-law nonlinearity \({\text{|}}u{\kern 1pt} {{{\text{|}}}^{q}}\). It is shown that, for \(1 < q \leqslant 3,\) a weak solution \(u(x,t)\) does not exist even locally in time for a wide class of initial functions \({{u}_{0}}(x)\), while, for \(3 < q \leqslant 5,\) global-in-time weak solutions of the Cauchy problem do not exist for a wide class of initial functions independent of the initial function value, i.e., for “small” initial functions as well. For \(q > 4\), the existence of a unique local-in-time weak solution is proved using results of distribution theory and the contraction mapping principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. B. Al’shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations (Walter de Gruyter, Berlin, 2011).

    Book  Google Scholar 

  2. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  3. G. A. Sviridyuk, “On the general theory of operator semigroups,” Russ. Math. Surv. 49 (4), 45–74 (1994).

    Article  MathSciNet  Google Scholar 

  4. S. A. Zagrebina, “Initial-boundary value problem for Sobolev-type equations with a strongly (L, p)-radial operator,” Mat. Zametki Yaroslav. Gos. Univ. 19 (2), 39–48 (2012).

    MATH  Google Scholar 

  5. A. A. Zamyshlyaeva and G. A. Sviridyuk, “Nonclassical equations of mathematical physics: Linear Sobolev type equations of higher order,” Vestn. Yuzhno-Ural. Univ. Ser. Mat. Mekh. Phys. 8 (4), 5–16 (2016).

    MATH  Google Scholar 

  6. B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid,” Math. USSR Sb. 37 (4), 559–579 (1979).

    Article  Google Scholar 

  7. S. A. Gabov and A. G. Sveshnikov, Linear Problems in the Theory of Unsteady Internal Waves (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  8. S. A. Gabov, New Problems in the Mathematical Theory of Waves (Fizmatlit, Moscow, 1998) [in Russian].

    Google Scholar 

  9. Yu. D. Pletner, “Fundamental solutions of Sobolev-type operators and some initial boundary value problems,” Comput. Math. Math. Phys. 32 (12), 1715–1728 (1992).

    MathSciNet  Google Scholar 

  10. E. L. Mitidieri and S. I. Pohozaev, “A priori estimates and blow-up of solutions to partial differential equations and inequalities,” Proc. Steklov Inst. Math. 234, 1–362 (2001).

    MATH  Google Scholar 

  11. E. I. Galakhov, “Some nonexistence results for quasilinear elliptic problems,” J. Math. Anal. Appl. 252 (1), 256–277 (2000).

    Article  MathSciNet  Google Scholar 

  12. E. I. Galakhov and O. A. Salieva, “On the blow-up of nonnegative monotone solutions of some noncoercive inequalities in a half-space,” Sovrem. Mat. Fundam. Napravl. 63 (4), 573–585 (2017).

    Google Scholar 

  13. M. O. Korpusov, “Critical exponents of instantaneous blow-up or local solubility of nonlinear equations of Sobolev type,” Izv. Math. 79 (5), 955–1012 (2015).

    Article  MathSciNet  Google Scholar 

  14. M. O. Korpusov, “Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type,” Theor. Math. Phys. 194 (3), 347–359 (2018).

    Article  MathSciNet  Google Scholar 

  15. M. O. Korpusov, A. V. Ovchinnikov, and A. A. Panin, “Instantaneous blow-up versus local solvability of solutions to the Cauchy problem for the equation of a semiconductor in a magnetic field,” Math. Methods Appl. Sci. 41 (17), 8070–8099 (2018).

    Article  MathSciNet  Google Scholar 

  16. M. O. Korpusov, Yu. D. Pletner, and A. G. Sveshnikov, “Unsteady waves in anisotropic dispersive media,” Comput. Math. Math. Phys. 39 (6), 968–984 (1999).

    MathSciNet  MATH  Google Scholar 

  17. V. P. Kudashev, A. B. Mikhailovskii, and S. E. Sharapov, “On the nonlinear theory of drift mode induced by toroidality,” Fiz. Plazmy 13 (4), 417–421 (1987).

    Google Scholar 

  18. F. F. Kamenets, V. P. Lakhin, and A. B. Mikhailovskii, “Nonlinear electron gradient waves,” Fiz. Plazmy 13 (4), 412–416 (1987).

    Google Scholar 

  19. A. P. Sitenko and P. P. Sosenko, “Short-wave convective turbulence and anomalous electron heat conduction of a plasma,” Fiz. Plazmy 13 (4), 456–462 (1987).

    Google Scholar 

  20. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971; Nauka, Moscow, 1988).

  21. A. A. Panin, “On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation,” Math. Notes 97 (6), 892–908 (2015).

    Article  MathSciNet  Google Scholar 

  22. V. P. Demidovich, Lectures on Mathematical Stability Theory (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Program of Strategic Academic Leadership of RUDN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. O. Korpusov or R. S. Shafir.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korpusov, M.O., Shafir, R.S. Blow-up of Weak Solutions of the Cauchy Problem for (3+1)-Dimensional Equation of Plasma Drift Waves. Comput. Math. and Math. Phys. 62, 117–149 (2022). https://doi.org/10.1134/S0965542522010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522010080

Keywords:

Navigation