Skip to main content
Log in

Asymptotics of the Riemann–Hilbert Problem for the Somov Model of Magnetic Reconnection of Long Shock Waves

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider the Riemann–Hilbert problem in a domain of complicated shape (the exterior of a system of cuts), with the condition of growth of the solution at infinity. Such a problem arises in the Somov model of the effect of magnetic reconnection in the physics of plasma, and its solution has the physical meaning of a magnetic field. The asymptotics of the solution is obtained for the case of infinite extension of four cuts from the given system, which have the meaning of shock waves, so that the original domain splits into four disconnected components in the limit. It is shown that if the coefficient in the condition of growth of the magnetic field at infinity consistently decreases in this case, then this field basically coincides in the limit with the field arising in the Petschek model of the effect of magnetic reconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the boundary elements (“simple ends” in the Carathéodory terminology); see [20], [21]. In the case where this does not lead to misunderstandings, we will simply call them boundary points.

  2. The boundary elements of other kinds are represented by a continuum consisting of more than one point.

  3. Not equal to infinity or not identically zero at the end points of the domain.

References

  1. B. V. Somov, Physical Processes in Solar Flares (Kluwer Academ, Dordrecht, 1992).

    Book  Google Scholar 

  2. D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  3. E. Priest and T. Forbes, Magneric Reconnection: MHD Theory and Applications (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  4. B. V. Somov, Plasma Astrophysics. Part II, Reconnection and Flares, 2nd ed. (Springer SBM, New York, 2013).

    Book  Google Scholar 

  5. W. Gonzales and E. Parker, Magnetic Reconnection. Concepts and Applications (Springer SBM, New York, 2016).

    Book  Google Scholar 

  6. S. I. Syrovatskii, “Dynamic dissipation and particle acceleration,” Astron. Zh. 43 (2), 340–355 (1966).

    Google Scholar 

  7. V. S. Imshennik and S. I. Syrovatskii, “Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field,” Soviet Phys. JETP 33 (5), 656–664 (1967).

    Google Scholar 

  8. B. V. Somov and S. I. Syrovatskii, “Hydrodynamic plasma flows in a strong magnetic field,” in Neutral Current Sheets in Plasmas (Springer, Boston, MA, 1974), pp. 13–71.

    Google Scholar 

  9. S. I. Syrovatskii, “Formation of current sheets in a plasma with a frozen-in strong magnetic field,” Soviet Phys. JETP 33 (5), 933–940 (1971).

    Google Scholar 

  10. K. V. Brushlinskii, A. M. Zaborov, and S. I. Syrovatskii, “Numerical analysis of the current sheet near a magnetic null line,” Soviet J. Plasma Phys. 6 (2), 165–173 (1980).

    Google Scholar 

  11. D. Biskamp, “Magnetic reconnection via current sheets,” Phys. Fluids 29, 1520 (1986).

    Article  Google Scholar 

  12. H. E. Petschek, “Magnetic field annihilation,” in AAS-NASA Symposium ”The Physics of Solar Flares“ (NASA Spec. Publ., SP-50, edited by W. N. Hess, National Aeronautics and Space Administration, Washington, DC, 1964), pp. 425–439.

    Google Scholar 

  13. S. A. Markovskii and B. V. Somov, “Some properties of the magnetic reconnection in a current sheet with shock waves,” in Proceedings of the 6th Annual Seminar on Problems in Solar Flare Physics. (Nauka, Moscow, 1988), pp. 93–110 [in Russian].

    Google Scholar 

  14. S. A. Markovskii and B. V. Somov, “Some properties of the magnetic reconnection in a current sheet with shock waves,” in Solar Plasma Physics (Nauka, Moscow, 1989), pp. 45 [in Russian].

    Google Scholar 

  15. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma,” Comput. Math. Math. Phys. 42 (3), 263–298 (2002).

    MathSciNet  MATH  Google Scholar 

  16. A. Kantrowitz and H. E. Petschek, “MHD characteristics and shock waves,” in Plasma Physics in Theory and Application (McGraw-Hill, New York, 1966), pp. 148–206.

    Google Scholar 

  17. S. I. Bezrodnykh and V. I. Vlasov, “Singular Riemann–Hilbert problem in complex–shaped domains,” Comput. Math. Math. Phys. 54 (12), 1826–1875 (2014).

    Article  MathSciNet  Google Scholar 

  18. V. I. Vlasov, Boundary Value Problems in Domains with Curved Boundaries (Comput. Centre Acad. Sci. USSR, Moscow, 1987) [in Russian].

    Google Scholar 

  19. S. I. Bezrodnykh and V. I. Vlasov, “Asymptotics of the Riemann–Hilbert problem for a magnetic reconnection model in plasma,” Comput. Math. Math. Phys. 60 (11), 1839–1854 (2020).

    Article  MathSciNet  Google Scholar 

  20. A. I. Markushevich, Theory of Analytic Functions, Vol. 2 (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  21. C. Carathéodory, “Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis,” Math. Ann. 73, 305–320 (1913).

    Article  MathSciNet  Google Scholar 

  22. C. Carathéodory, “Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten,” Math. Ann. 72, 107–144 (1912).

    Article  MathSciNet  Google Scholar 

  23. W. Koppenfels and F. Stallmann, Praxis der Konformen Abbildung (Springer, Berlin, 1959).

    Book  Google Scholar 

  24. M. A. Lavrentieff and B. V. Shabat, Methods of the Theory of Complex Variable (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  25. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953), Vol. 1.

    Google Scholar 

  26. H. Exton, Multiple Hypergeometric Functions and Application (J. Willey & Sons inc, New York, 1976).

    MATH  Google Scholar 

  27. S. I. Bezrodnykh, “The Lauricella hypergeometric function \(F_D^{(N)}\), the Riemann–Hilbert problem, and some applications,” Russ. Math. Surveys 73 (6 (444)), 941–1031 (2018).

    Article  MathSciNet  Google Scholar 

  28. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  29. G. D. Suvorov, “On the continuity in the closed circle of functions regular in the open circle,” Uspehi Mat. Nauk (N. S.) 11 (3(69)), 177–179 (1956).

    MathSciNet  Google Scholar 

  30. G. M. Goluzin, Geometric Theory of Functions of Complex Variable (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  31. C. Carathéodory, Gesammelte Mathematische Schriften. Dritter Band (C. H. Beck, München, 1955); Gesammelte Mathematische Schriften. Vierter Band (C. H. Beck , München, 1956).

    Google Scholar 

  32. V. I. Vlasov, “On the variation of the mapping function under deformation of a domain,” Sov. Math. Dokl. 29, 377–379 (1984).

    MATH  Google Scholar 

  33. F. D. Gakhov, Boundary Value Problems (Dover, New York, 1990).

    MATH  Google Scholar 

  34. N. I. Muskhelishvili, Singular Integral Equations (Wolters–Noordhoff, Groningen, 1972).

    Google Scholar 

  35. V. Vasyliunas, “Theoretical models of magnetic field line merging, 1,” Reviews of Geophysics and Space Physics 13 (1), 303–336 (1975).

    Article  Google Scholar 

  36. E. G. Zweibel and M. Yamada, “Magnetic reconnection in astrophysical and laboratory plasmas,” Annual Review of Astronomy and Astrophysics 47, 291–332 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as a part of the program of Moscow Center for Fundamental and Applied Mathematics (grant no. 075-15-2019-1621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Bezrodnykh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I., Vlasov, V.I. Asymptotics of the Riemann–Hilbert Problem for the Somov Model of Magnetic Reconnection of Long Shock Waves. Math Notes 110, 853–871 (2021). https://doi.org/10.1134/S0001434621110225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621110225

Keywords

Navigation