Skip to main content
Log in

On Multipoint Padé Approximants whose Poles Accumulate on Contours that Separate the Plane

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this note, we consider asymptotics of the multipoint Padé approximants to Cauchy integrals of analytic nonvanishing densities defined on a Jordan arc connecting \( -1 \) and \( 1 \). We allow for the situation where the (symmetric) contour attracting the poles of the approximants separates the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. This definition yields one additional interpolation condition at infinity.

References

  1. J. Nuttall and S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs,” J. Approx. Theory 21, 1–42 (1977).

    Article  Google Scholar 

  2. M. L. Yattselev, “Nuttall’s theorem with analytic weights on algebraic S-contours,” J. Approx. Theory 190, 73–90 (2015).

    Article  MathSciNet  Google Scholar 

  3. S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions.,” Mat. Sb. 191 (9), 81–114 (2000).

    Article  MathSciNet  Google Scholar 

  4. S. P. Suetin, “Approximation properties of the poles of diagonal Padé approximants for certain generalizations of Markov functions,” Mat. Sb. 193 (12), 105–133 (2002).

    Article  Google Scholar 

  5. L. Baratchart and M. Yattselev, “Padé approximants to certain elliptic-type functions,” J. Anal. Math. 121, 31–86 (2013).

    Article  MathSciNet  Google Scholar 

  6. L. Baratchart and M. L. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs,” Found. Comput. Math. 9 (6), 675–715 (2009).

    Article  MathSciNet  Google Scholar 

  7. B. de la Calle Ysern and G. López Lagomasino, “Strong asymptotics of orthogonal polynomials with respect to varying measures and Hermite-Padé approximants,” J. Comp. Appl. Math. 99, 91–109 (1998).

    Article  Google Scholar 

  8. H. Stahl, “Strong asymptotics for orthogonal polynomials with varying weights,” Acta Sci. Math. (Szeged) 65, 717–762 (1999).

    Google Scholar 

  9. M. L. Yattselev, “Symmetric contours and convergent interpolation,” J. Approx. Theory 225, 76–105 (2018).

    Article  MathSciNet  Google Scholar 

  10. H. Stahl, “Extremal domains associated with an analytic function. I, II,” Complex Variables Theory Appl. 4, 311–324, 325–338 (1985).

    Article  MathSciNet  Google Scholar 

  11. H. Stahl, “Structure of extremal domains associated with an analytic function,” Complex Variables Theory Appl., No. 4, 339–356 (1985).

    Article  MathSciNet  Google Scholar 

  12. H. Stahl, “Orthogonal polynomials with complex valued weight function. I, II,” Constr. Approx. 2 (3), 225–240, 241–251 (1986).

    Article  MathSciNet  Google Scholar 

  13. A. I. Aptekarev and M. L. Yattselev, “Padé approximants for functions with branch points — strong asymptotics of Nuttall-Stahl polynomials,” Acta Math. 215 (2), 217–280 (2015).

    Article  MathSciNet  Google Scholar 

  14. A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and the degree of rational approximation of analytic functions,” Mat. Sb. 134(176) (3(11)), 306–352 (1987).

    MATH  Google Scholar 

  15. V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions,” Sb. Math. 204 (2), 190–222 (2013).

    Article  MathSciNet  Google Scholar 

  16. V. I. Buslaev, “Convergence of \(m\)-point Padé approximants of a tuple of multivalued analytic functions,” Sb. Math. 206 (2), 175–200 (2015).

    Article  MathSciNet  Google Scholar 

  17. M. L. Yattselev, “Convergence of two-point Padé approximants to piecewise holomorphic functions,” Sb. Math., 2021 (to appear).

    Google Scholar 

  18. F. D. Gakhov, Boundary Value Problems (Dover Publications, Inc., New York, 1990).

    MATH  Google Scholar 

  19. Sh. Yamashita, “Some remarks on analytic continuations,” Tôhoku Math. Journ. 21, 328–335 (1969).

    Article  MathSciNet  Google Scholar 

  20. A. S. Fokas, A. R. Its, and A. V. Kitaev, “Discrete Panlevé equations and their appearance in quantum gravity,” Comm. Math. Phys. 142 (2), 313–344 (1991).

    Article  MathSciNet  Google Scholar 

  21. A. S. Fokas, A. R. Its, and A. V. Kitaev, “The isomonodromy approach to matrix models in 2D quantum gravitation,” Comm. Math. Phys. 47 (2), 395–430 (1992).

    Article  Google Scholar 

  22. P. Deift and X. Zhou, “A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation.,” Ann. of Math. 137, 295–370 (2003).

    Article  MathSciNet  Google Scholar 

  23. P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, in Courant Lectures in Mathematics (Amer. Math. Soc., Providence, RI, 2000), Vol. 3.

    MATH  Google Scholar 

Download references

Funding

This work was supported in part by a grant from the Simons Foundation, CGM-706591, and by Moscow Center for Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation, No. 075-15-2019-1623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Yattselev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yattselev, M.L. On Multipoint Padé Approximants whose Poles Accumulate on Contours that Separate the Plane. Math Notes 110, 784–795 (2021). https://doi.org/10.1134/S0001434621110158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621110158

Keywords

Navigation