Skip to main content
Log in

A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Problems of constructing regular majorants for sequences \(\mu=\{\mu_n\}_{n=0}^{\infty}\) of numbers \(\mu_n\ge0\) that are the Taylor coefficients of integer transcendental functions of minimal exponential type are investigated. A new criterion for the existence of regular minorants of associated sequences of the extended half-line \((0,+\infty]\) in terms of the Levinson bilogarithmic condition \(M=\{\mu_n^{-1}\}_{n=0}^{\infty}\) is obtained. The result provides a necessary and sufficient condition for the nontriviality of the important subclass defined by J. A. Siddiqi. The proofs of the main statements are based on properties of the Legendre transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(M(0)\ne0\), then the function \(M (x)/x\) decreases for \(x>0\), because

    $$\frac{M(x)}{x}=\frac{M(x)-M(0)}{x-0}+\frac{M(0)}{x}\downarrow$$

    for \(0<x\uparrow\).

  2. Formulated as a conjecture in the referee’s report.

  3. The minorant \(\{M_n^{*}\}\) constructed in [6] only has properties a), c) from the definition of regularity.

References

  1. S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications (Gauthier-Villars, Paris, 1952).

    MATH  Google Scholar 

  2. E. M. Dynkin, “Pseudo-analytic continuation of smooth functions. Uniform scale,” in Mathematical Programming and Related Issues. Theory of Functions and Functional Analysis, Proceedings of the VII Winter Workshop, Drohobych, 1974 (TsÉMI RAN, Moscow, 1976), pp. 40–73 [in Russian].

    Google Scholar 

  3. A. M. Gaisin and I. G. Kinzyabulatov, “A Levinson-Sjöberg type theorem. Applications,” Sb. Math. 199 (7), 985–1007 (2008).

    Article  MathSciNet  Google Scholar 

  4. K. V. Trounov and R. S. Yulmukhametov, “Quasi-analytic Carleman classes on bounded domains,” St. Petersburg Math. J. 20 (2), 289–317 (2009).

    Article  MathSciNet  Google Scholar 

  5. R. A. Gaisin, “Quasi-analyticity criteria of Salinas–Korenblum type for general domains,” Ufa Math. J. 5 (3), 28–39 (2013).

    Article  MathSciNet  Google Scholar 

  6. R. A. Gaisin, “Regularization of sequences in sense of E. M. Dynkin,” Ufa Math. J. 7 (2), 64–70 (2015).

    Article  MathSciNet  Google Scholar 

  7. A. F. Leont’ev, The sequences of Polynomials of Exponentials (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  8. A. Beurling, “Analytic continuation across a liniear boundary,” Acta Math. 128 (3-4), 153–182 (1972).

    Article  MathSciNet  Google Scholar 

  9. P. Koosis, The Logarithmic Integral. I , in Cambridge Stud. Adv. Math. (Cambridge Univ. Press, Cambridge, 1988), Vol. 12.

    Book  Google Scholar 

  10. R. A. Gaisin, “On the condition of quasianalyticity of the Carleman class for weakly uniform domains,” in Abstracts of the VI International Workshop for Students, Postgraduates, and Young Scientists ‘Fundamental Mathematics and Its Applications in Natural Science” (RITs BashGU, Ufa, 2013), pp. 260 [in Russian].

    Google Scholar 

  11. G. M. Fikhtengol’ts, A Course in Differential and Integral Calculus. II (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  12. D. E. Men’shov, Selected Works. Mathematics (Faktorial, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  13. R. A. Gaisin, “Estimation of intermediate derivatives and theorems of Bang type. I,” St. Petersburg Math. J. 27 (1), 15–31 (2016).

    Article  MathSciNet  Google Scholar 

  14. J. A. Siddiqi, “Non-spanning sequences of exponentials on rectifiable plane arcs,” in Linear and Complex Analysis. Problem Book, Lecture Notes in Math. (Springer- Verlag, Berlin, 1984), Vol. 1043, pp. 555–556.

    Google Scholar 

  15. P. Malliavin and J. A. Siddiqi, “Classes de fonctions monogenes et approximation par des sommes d’exponentielles sur un arc rectifiable de \(\mathbb{C}\),” C. R. Acad. Sci. Paris Sér. A 282, 1091–1094 (1976).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Gaisin.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 110, pp. 672–687 https://doi.org/10.4213/mzm13261.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisin, R.A. A Bilogarithmic Criterion for the Existence of a Regular Minorant that Does Not Satisfy the Bang Condition. Math Notes 110, 666–678 (2021). https://doi.org/10.1134/S0001434621110031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621110031

Keywords

Navigation