Skip to main content
Log in

Coadjoint Orbits and Time-Optimal Problems for Step-\(2\) Free Nilpotent Lie Groups

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The coadjoint orbits and the Casimir functions are described for free nilpotent Lie groups of step \(2\). The symplectic foliation consists of affine subspaces in the Lie coalgebra. Left-invariant time-optimal problems are considered on Carnot groups of step \(2\) for which the set of admissible velocities is a strictly convex compact set in the first layer of the Lie algebra that contains the origin in its interior. The first integrals of the vertical subsystem of the Hamiltonian system of the Pontryagin maximum principle are described. For two-dimensional coadjoint orbits, the constancy and periodicity properties of the solutions of this subsystem, as well as the phase flow, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications (Amer. Math. Soc., Providence, RI, 2002).

    MATH  Google Scholar 

  2. A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint (Springer, Berlin, 2004).

    Book  Google Scholar 

  3. A. Agrachev, D. Barilari, and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry (Cambridge Univ. Press, Cambridge, 2019).

    Book  Google Scholar 

  4. V. N. Berestovskii, “Homogeneous manifolds with intrinsic metric. II,” Sib. Math. J. 30 (2), 180–191 (1989).

    Article  MathSciNet  Google Scholar 

  5. V. N. Berestovskii, “Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane,” Sib. Math. J. 35 (1), 3–11 (1994).

    Article  Google Scholar 

  6. D. Barilari, U. Boscain, E. Le Donne, and M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions,” J. Dyn. Control Syst. 23 (3), 547–575 (2017).

    Article  MathSciNet  Google Scholar 

  7. A. A. Ardentov, E. Le Donne, and Yu. L. Sachkov, “Sub-Finsler Geodesics on the Cartan Group,” Regul. Chaotic Dyn. 24 (1), 36–60 (2019).

    Article  MathSciNet  Google Scholar 

  8. E. Le Donne and G. Speight, “Lusin approximation for horizontal curves in step 2 Carnot groups,” Calc. Var. Partial Differential Equations 55 (5, Art. 111) (2016).

    MathSciNet  MATH  Google Scholar 

  9. E. Le Donne and S. Rigot, “Remarks about Besicovitch covering property in Carnot groups of step 3 and higher,” Proc. Amer. Math. Soc. 144 (5), 2003–2013 (2016).

    Article  MathSciNet  Google Scholar 

  10. Yu. Sachkov, “Periodic controls in step 2 strictly convex sub-Finsler problems,” Regul. Chaotic Dyn. 25 (1), 33–39 (2020).

    Article  MathSciNet  Google Scholar 

  11. H. Busemann, “The isoperimetric problem in the Minkowski plane,” Amer. J. Math. 69 (4), 863–871 (1947).

    Article  MathSciNet  Google Scholar 

  12. R. W. Brockett, “Nonlinear control theory and differential geometry,” in Proceedings of the International Congress of Mathematicians (PWN, Warszawa, 1983), pp. 1357–1368.

    Google Scholar 

  13. O. Myasnichenko, “Nilpotent \((3,6)\) sub-Riemannian problem,” J. Dynam. Control Systems 8 (4), 573–597 (2002).

    Article  MathSciNet  Google Scholar 

  14. L. Rizzi and U. Serres, “On the cut locus of free, step two Carnot groups,” Proc. Amer. Math. Soc. 145 (12), 5341–5357 (2017).

    Article  MathSciNet  Google Scholar 

  15. A. A. Kirillov, Lectures on the Orbit Method (Amer. Math. Soc., Providence, RI, 2004).

    Book  Google Scholar 

  16. R. T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, NJ, 1970).

    Book  Google Scholar 

  17. V. Jurdjevic, Geometric Control Theory (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  18. E. Hakavuori, Infinite Geodesics and Isometric Embeddings in Carnot Groups of Step 2, arXiv: 1905.03214 (2019).

    MATH  Google Scholar 

  19. Yu. L. Sachkov, “Exponential map in the generalized Dido problem,” Sb. Math. 194 (9), 1331–1359 (2003).

    Article  MathSciNet  Google Scholar 

  20. I. A. Bizyaev, A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups,” Regul. Chaotic Dyn. 21 (6), 759–774 (2016).

    Article  MathSciNet  Google Scholar 

  21. L. V. Lokutsievskii and Yu. L. Sachkov, “Liouville integrability of sub-Riemannian problems on Carnot groups of step 4 or greater,” Sb. Math. 209 (5), 672–713 (2018).

    Article  MathSciNet  Google Scholar 

  22. A. V. Podobryaev, “Casimir functions of free nilpotent Lie groups of steps three and four,” J. Dyn. Control Syst. (in press); arXiv: 2006.00224 (2020).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant 17-11-01387-P at Ailamazyan Program Systems Institute of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Sachkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachkov, Y.L. Coadjoint Orbits and Time-Optimal Problems for Step-\(2\) Free Nilpotent Lie Groups. Math Notes 108, 867–876 (2020). https://doi.org/10.1134/S0001434620110280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620110280

Keywords

Navigation