Mathematical Notes

, Volume 103, Issue 1–2, pp 67–74 | Cite as

Rotation of a Neutron in the Coat of Helium-5 as a Classical Particle for a Relatively Large Value of the Hidden Parameter tmeas



Rotation of a neutron in the coat of helium-5 as a classical particle for a relatively large value of the hidden parameter (measurement time) tmeas = h/Ems is considered. In consideration of the asymptotics as N → 0, equations for the mesoscopic energy Ems are given. A model for the helium nucleus is introduced and the values of the mesoscopic parameters Mms, and Ems for helium-4 are calculated.


shell of the nucleus helium-4 helium-5 helium-6 self-consistent Hartree equations coat of helium-5 hidden parameter mesoscopics twisted fermion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Maslov, “A model of classical thermodynamics based on the partition theory of integers, Earth gravitation and semiclassical asymptotics. I,” Russian J. Math. Phys. 24 (3), 354–372 (2017).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    V. P. Maslov, “A model of classical thermodynamics and mesoscopic physics based on the notion of hidden parameter, Earth gravitation, and semiclassical asymptotics. II,” Russian J. Math. Phys. 24 (4), 494–504 (2017).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    V. P. Maslov, ComplexMarkov Chains and the Feynman Path Integral forNonlinear Equations (Nauka, Moscow, 1976) [in Russian].Google Scholar
  4. 4.
    V. P. Maslov and O.Yu. Shvedov, Complex-GermMethod inMultiparticle Problems and Quantum Field Theory Problems (URSS, Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    S. I. Pohozhaev, “On the Maslov equations,” Differ. Uravn. 31 (2) 338–349 (1995) [Differ. Equations 31 (2) 315–326 (1995)].MathSciNetGoogle Scholar
  6. 6.
    A. I. Shtern, “Remark concerning Maslov’s theorem on homomorphisms of topological groups,” Russian J. Math. Phys. 24 (2), 262–262 (2017).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    V. P. Maslov, “Quasithermodynamic correction to the Stefan–Boltzmann law,” Teoret. Mat. Fiz. 154 (1), 207–208 (2008) [Theoret. and Math. Phys. 154 (1), 175–176 (2008)].MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    V. P. Maslov, “New approach to classical thermodynamics,” Math. Notes 100 (1–2) 154–185 (2016).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    V. P. Maslov and V. E. Nazaikinskii, “Conjugate variables in analytic number theory. Phase space and Lagrangian manifolds,” Math. Notes 100 (3–4), 421–428 (2016).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    V. P. Maslov, S. Yu. Dobrokhotov, and V. E. Nazaikinskii, “Volume and entropy in abstract analytic number theory and thermodynamics,” Math. Notes 100 (5–6), 828–834 (2016).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    V. P. Maslov, “New insight into the partition theory of integers related to problems of thermodynamics and mesoscopic physics,” Math. Notes 102 (1–2) 234–251 (2017).MathSciNetMATHGoogle Scholar
  12. 12.
    V. P. Maslov, “On the hidden parameter in quantum and classical mechanics,” Math. Notes 102 (5–6), 890–893 (2017).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 2nd ed. (Nauka, Moscow, 1964; translation of the 1st ed., Pergamon Press, London–Paris and Addison-Wesley Publishing Co., Inc., Reading, Mass., 1958).Google Scholar
  14. 14.
    V. P. Maslov, Threshold Levels in Economics, arXiv:0903.4783v2 [q-fin. ST], 3 Apr 2009.MATHGoogle Scholar
  15. 15.
    A. G. Postnikov, Introduction to Analytic Number Theory (Nauka, Moscow, 1971).MATHGoogle Scholar
  16. 16.
    V. P. Maslov, “Two first principles of Earth surface thermodynamics. mesoscopy, energy accumulation, and the branch point in boson?fermion transition*,” Math. Notes 102 (6), 824–835 (2017).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    V. P. Maslov, “Transition from mesoscopy of low levels of the liquid-drop model of nucleus to macroscopy of critical mass of uranium and plutonium with regard to partition theory”, J Astrophys Aerospace Technol 5 (2) (Suppl) 47 (2017). DOI: 10.4172/2329-6542-C1-008Google Scholar
  18. 18.
    V. P. Maslov, “Mathematical Aspects of Weakly Nonideal Bose and Fermi Gases on a Crystal Base”, Funktsional. Anal. i Prilozhen. 37 (2), 16–27 (2003) [Functional Anal. Appl. 37 (2), 94–102 (2003)].MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yu. L. Ershov, Numeration Theory (Nauka, Moscow, 1977).Google Scholar
  20. 20.
    J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1 (3), 198–200 (1964).Google Scholar
  21. 21.
    L. D. Landau and E. M. Lifshits, Statistical Physics (Fizmatlit, Moscow, 2003) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations