Skip to main content
Log in

Trigonometric integrals over one-dimensional quasilattices of arbitrary codimension

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The class of one-dimensional quasilattices parametrized by translations of the torus is studied. The trigonometric integrals averaging the moduli of trigonometric sums related to quasilattices are considered for this class. Nontrivial estimates of such integrals are obtained. The relationship between trigonometric integrals and several problems in the theory of Diophantine approximations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Janot, Quasicrystals: A Primer (Clarendon Press, Oxford, 1994).

    Book  MATH  Google Scholar 

  2. V. V. Krasil’shchikov and A. V. Shutov, “One-dimensional quasicrystals: Approximation by periodic structures and enclosure of lattices,” in Newest Problems of Field Theory (Izd. Kazansk. Univ., Kazan, 2006), Vol. 5, pp. 145–154 [in Russian].

    Google Scholar 

  3. V. V. Krasil’shchikov and A. V. Shutov, “Several problems of enclosure of lattices in one-dimensional quasiperiodic tilings,” Vestnik Samara Gos. Univ., Estestvennonauch. Ser., No. 7 57, 84–91 (2007).

    Google Scholar 

  4. V. V. Krasil’shchikov and A. V. Shutov, “One-dimensional quasiperiodic tilings admitting progressions enclosure,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 3–9 (2009) [Russian Math. (Iz. VUZ) 53 7, 1–6 (2009)].

    MathSciNet  MATH  Google Scholar 

  5. V. V. Krasil’shchikov and A. V. Shutov, “Distribution of points of one-dimensional quasilattices with respect to a variable module,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 17–23 (2012) [Russian Math. (Iz. VUZ) 56 3, 14–19 (2012)].

    MathSciNet  MATH  Google Scholar 

  6. V. V. Krasil’shchikov, “The spectrum of one-dimensional quasilattices,” Sibirsk. Mat. Zh. 51 1, 68–73 (2010) [SiberianMath. J. 51 1, 53–56 (2010)].

    MathSciNet  MATH  Google Scholar 

  7. A. V. Shutov, “The arithmetic and geometry of one-dimensional quasilattices,” Chebyshevskii Sb. 11 1, 255–262 (2010).

    MathSciNet  MATH  Google Scholar 

  8. A. V. Shutov, “Trigonometric sums over one-dimensional quasilattices,” Chebyshevskii Sb. 13 2, 136–148 (2012).

    MathSciNet  MATH  Google Scholar 

  9. A. V. Shutov, “Trigonometric sums over one-dimensional quasilattices of arbitrary codimension,” Mat. Zametki 97 5, 781–793 (2015) [Math. Notes 97 (5–6), 791–802 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  10. I. M. Vinogradov, The Method of Trigonometric Sums in the Theory of Numbers (Nauka, Moscow, 1971; Dover Publ., 2004).

    Google Scholar 

  11. V. G. Zhuravlev, “A multidimensional Hecke theorem on the distribution of fractional parts,” Algebra Anal. 24 1, 95–130 (2012) [St. PetersburgMath. J. 24 1, 71–97 (2013)].

    MathSciNet  Google Scholar 

  12. V. Baladi, D. Rockmore, N. Tongring, and C. Tresser, “Renormalization on the n-dimensional torus,” Nonlinearity 5 5, 1111–1136 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Rauzy, “Nombres algébriques et substitutions,” Bull. Soc. Math. France 110 2, 147–178 (1982).

    MathSciNet  MATH  Google Scholar 

  14. A. V. Shutov, “The two-dimensional Hecke–Kesten problem,” Chebyshevskii Sb. 12 2, 151–162 (2011).

    MathSciNet  MATH  Google Scholar 

  15. A. V. Shutov, “On a family of two-dimensional bounded remainder sets,” Chebyshevskii Sb. 12 4, 264–271 (2011).

    MathSciNet  MATH  Google Scholar 

  16. A. A. Abrosimova, “Bounded remainder sets on a two-dimensional torus,” Chebyshevskii Sb. 12 4, 15–23 (2011).

    MathSciNet  MATH  Google Scholar 

  17. N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics (Springer-Verlag, Berlin, 2002).

    Book  MATH  Google Scholar 

  18. V. G. Zhuravlev, “Bounded remainder polyhedra,” in TrudyMat. Inst. Steklov, Sovrem. Probl. Mat. Vol. 16: Mathematics and Informatics, 1, Collection of papers dedicated to Anatolii Alekseevich Karatsuba on the occasion of his 75th birthday (MIAN, Moscow, 2012), pp. 82–102 [in Russian] [Proc. Steklov Inst. Math. 280, Suppl. 2, S71–S90 (2013)].

    Google Scholar 

  19. A. A. Abrosimova, “BR-Sets,” Chebyshevskii Sb. 16 2, 8–22 (2015).

    Google Scholar 

  20. A. V. Shutov, “Multidimensional generalizations of sums of fractional parts and their number-theoretic applications,” Chebyshevskii Sb. 14 1, 104–118 (2013).

    MathSciNet  Google Scholar 

  21. H. Weyl, “Über die Gibbs’sche Erscheinung und verwandte Konvergenzphänomene,” Rend. Circ. Math. Palermo 30, 377–407 (1910).

    Article  MATH  Google Scholar 

  22. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences (Interscience, New York–London–Sydney, Mir, Moscow, 1985).

    MATH  Google Scholar 

  23. J. Beck, “Probabilistic diophantine approximation. I. Kronecker sequences,” Ann. Math. 140 2, 451–502 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1997), Vol. 1651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shutov.

Additional information

Original Russian Text © A. V. Shutov, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 4, pp. 603–612.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutov, A.V. Trigonometric integrals over one-dimensional quasilattices of arbitrary codimension. Math Notes 99, 590–597 (2016). https://doi.org/10.1134/S0001434616030329

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616030329

Keywords

Navigation