Skip to main content
Log in

Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we establish upper bounds for the moduli of zeros of Hermite–Padé approximations of type I for a system of exponential functions \(\left\{ {{e^{{\lambda _{{p^z}}}}}} \right\}_{p = 0}^k\), where \(\left\{ {{\lambda _p}} \right\}_{p = 0}^k\) are various arbitrary complex numbers. The proved statements supplement and generalize well-known results due to Saff and Varga, as well as those due to Stahl and Wielonsky, on the behavior of zeros of Hermite–Padé approximations for a set of exponential functions \(\left\{ {{e^{pz}}} \right\}_{p = 0}^k\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mahler, “Perfect systems,” Compositio Math. 19, 95–166 (1968).

    MathSciNet  MATH  Google Scholar 

  2. A. I. Aptekarev and H. Stahl, “Asymptotics of Hermite–Padépolynomials,” in Progress in Approximation Theory, Springer Ser. Comput. Math. (Springer, New York, 1992), Vol. 19.

    Google Scholar 

  3. C. Hermite, “Sur la fonction exponentielle,” C. R. Akad. Sci. (Paris) 77, 18–24, 74–79, 226–233, 285–293 (1873).

    Google Scholar 

  4. F. Klein, Elementarmathematik vom höheren Standpunkte aus, Vol. 1: Arithmetik, Algebra, Analysis (Springer, Berlin, 1968; Nauka, Moscow, 1987).

    Google Scholar 

  5. A. I. Aptekarev, “Convergence of rational approximations to a set of exponential functions,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 1, 68–74 (1981).

    MathSciNet  MATH  Google Scholar 

  6. H. Padé, “Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d’introduction àla théorie des fractions continues algbriques,” Ann. école Norm. Sup. Paris 16, 395–426 (1899).

    MATH  Google Scholar 

  7. C. Hermite, “Sur la généralisation des fractions continues algébriques,” Ann. Math. Pura. Appl. Ser. 2A 21, 289–308 (1883).

    Article  Google Scholar 

  8. K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I,” J. Reine Angew. Math. 166, 118–136 (1931); “Zur Approximation der Exponentialfunktion und des Logarithmus. II,” J. Reine Angew. Math. 166, 137–150 (1932).

    MathSciNet  MATH  Google Scholar 

  9. K. Mahler, “Applications of some formulas by Hermite to the approximation exponentials and logarithms,” Math. Ann. 168, 200–227 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988) [Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1991, Vol. 92).

    MATH  Google Scholar 

  11. A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkel’shtein, and S. P. Suetin, “Padéapproximants, continued fractions, and orthogonal polynomials,” UspekhiMat. Nauk 66 6, 37–122 (2011) [RussianMath. Surveys 66 6, 1049–1131 (2011)].

    Article  MathSciNet  Google Scholar 

  12. J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler’s equation: a Chebyshev–Hermite–Padémethod,” J. Comput. Appl. Math. 223 2, 693–702 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Beckermann, V. Kalyagin, A. C. Matos, and F. Wielonsky, “How well does the Hermite–Padéapproximation smooth the Gibbs phenomenon?,” Math. Comp. 80 274, 931–958 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. N. Sorokin, “Cyclic graphs and Apéry’s theorem,” Uspekhi Mat. Nauk 57 3, 99–134 (2002) [Russian Math. Surveys 57 3, 535–571 (2002)].

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence,” in Continued Fractions: From Analytic Number Theory to Constructive Approximation, Contemp. Math. (Amer. Math. Soc., Providence, RI, 1999), Vol. 236, pp. 325–342.

    Chapter  Google Scholar 

  16. G. V. Chudnovsky, “Hermite–Padéapproximations to exponential functions and elementary estimates of the measure of irrationality of p,” in Riemann Problem, Complete Integrability and Arithmetic Applications, Lecture Notes in Math. (Springer-Verlag, Berlin, 1982), Vol. 925, pp. 299–322.

    Chapter  Google Scholar 

  17. Rational Approximations of the Euler Constant and Recurrence Relations, in Modern Problems of Mathematics, Ed. by A. I. Aptekarev (MIAN, Moscow, 2007), Vol. 9 [in Russian].

  18. V. A. Kalyagin, “Hermite-Padéapproximants and spectral analysis of nonsymmetric operators,” Mat. Sb. 185 6, 79–100 (1994) [Sb. Math. 82 1, 199–216 (1995)].

    MathSciNet  Google Scholar 

  19. A. I. Aptekarev, V. A. Kalyagin, and E. B. Saff, “Higher-order the three-term recurrences and asymptotics of multiple orthogonal polynomials,” Constr. Approx. 30 2, 175–223 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. I. Aptekarev, P. M. Bleher, and A. B. J. Kuijlaars, “Large n limit of Gaussian random matrices with external source, Part II,” Comm. Math. Phys. 259 2, 367–389 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source,” Teoret. Mat. Fiz. 159 1, 34–57 (2009) [Theoret. and Math. Phys. 159 1, 448–468 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  22. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Random matrices with external source and the asymptotic behavior of multiple orthogonal polynomials,” Mat. Sb. 202 2, 3–56 (2011) [Sb. Math. 202 2, 155–206 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Szegö, “Über einige Eigenschaften der Exponentialreihe,” Sitzungsber. Berl. Math. Ges. 23, 50–64 (1924).

    Google Scholar 

  24. E. B. Saff and R. S. Varga, “On zeros and poles of Padéapproximations to ez, II,” in Padéand Rational Approximations (Academic Press, New York, 1977), pp. 195–213.

    Chapter  Google Scholar 

  25. F. Wielonsky, “Asymptotics of Diagonal Hermite–PadéApproximants to ez,” J. Approx. Theory 90 2, 283–298 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Stahl, “Asymptotics for quadratic Hermite–Padépolynomials associated with the exponential function,” Electron. Trans. Numer. Anal., No. 14, 195–220 (2002).

    MathSciNet  MATH  Google Scholar 

  27. H. Stahl, “Asymptotic distributions of the zeros of quadratic Hermite–Padépolynomials associated with the exponential function,” Constr. Approx. 23 2, 121–164 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et probl‘emes de Riemann–Hiebert,” C. R. Acad. Sci. Paris 336 11, 893–896 (2003).

    Article  MATH  Google Scholar 

  29. A. B J. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Type II Hermite–Padéapproximation to the exponential function,” J. Comput. Appl. Math. 207 2, 227–244 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. B J. Kuijlaars, W. Van Assche, and F. Wielonsky, “Quadratic Hermite–Padéapproximation to the exponential function: a Riemann–Hiebert approach,” Constr. Approx. 21 3, 351–412 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. B. Borwein, “Quadratic Hermite–Padéapproximation to the exponential function,” Constr. Approx. 2 4, 291–302 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. P. Starovoitov, “Hermite approximation of two exponential functions,” Izv. Saratovsk. Univ. New Ser. Mat. Mekh. Inform. 13 (1 (2)), 87–91 (2013).

    MATH  Google Scholar 

  33. F. Wielonsky, “Some properties of Hermite–Padéapproximants to ez,” in Continued Fractions: From Analytic Number Theory to Constructive Approximation, Contemp. Math. (Amer. Math. Soc., Providence RI, 1999), Vol. 236, pp. 369–379.

    Chapter  Google Scholar 

  34. F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function,” J. Approx. Theory 131 1, 100–148 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  36. J. L. Walsh, “On the location roots of certain types of polynomias,” Trans. Amer. Math. Soc. 24 3, 163–180 (1922).

    Article  MathSciNet  Google Scholar 

  37. M. Marden, Geometry of Polynomials, in Math. Surveys (Amer. Math. Soc., Providence, RI, 1966), Vol. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Starovoitov.

Additional information

Original Russian Text © A. P. Starovoitov, E. P. Kechko, 2016, published in Matematicheskie Zametki, 2016, Vol. 99, No. 3, pp. 409–420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starovoitov, A.P., Kechko, E.P. Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions. Math Notes 99, 417–425 (2016). https://doi.org/10.1134/S0001434616030111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434616030111

Keywords

Navigation