Skip to main content
Log in

On some properties of Hermite–Padé approximants to an exponential system

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Extremal properties and localization of zeros of general (including nondiagonal) type I Hermite–Padé polynomials are studied for the exponential system {e λjz} k j=0 with arbitrary different complex numbers λ0, λ1,..., λk. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Aptekarev, “Padé approximations for the system {1 F 1(1, c; λiz)} i=1 k,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 58–62 (1981) [Moscow Univ. Math. Bull. 36 (2), 73–76 (1981)].

    MATH  Google Scholar 

  2. A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points,” Dokl. Akad. Nauk 422 (4), 443–445 (2008) [Dokl. Math. 78 (2), 717–719 (2008)].

    MATH  Google Scholar 

  3. A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, and S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials,” Usp. Mat. Nauk 66 (6), 37–122 (2011) [Russ. Math. Surv. 66, 1049–1131 (2011)].

    Article  MATH  Google Scholar 

  4. A. I. Aptekarev, V. A. Kalyagin, and E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials,” Constr. Approx. 30 (2), 175–223 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source,” Teor. Mat. Fiz. 159 (1), 34–57 (2009) [Theor. Math. Phys. 159, 448–468 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  6. A. I. Aptekarev, V. G. Lysov, and D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials,” Mat. Sb. 202 (2), 3–56 (2011) [Sb. Math. 202, 155–206 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  7. A. V. Astafyeva and A. P. Starovoitov, “Hermite–Padé approximation of exponential functions,” Mat. Sb. 207 (6), 3–26 (2016) [Sb. Math. 207, 769–791 (2016)].

    Article  MATH  Google Scholar 

  8. G. A. Baker Jr. and P. Graves-Morris, Padé Approximants, Part 1: Basic Theory; Part 2: Extensions and Applications (Addison-Wesley, Reading, MA, 1981).

    MATH  Google Scholar 

  9. P. B. Borwein, “Quadratic Hermite–Padé approximation to the exponential function,” Constr. Approx. 2, 291–302 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Braess, “On the conjecture of Meinardus on rational approximation of ex. II,” J. Approx. Theory 40 (4), 375–379 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 272–279 (2015) [Proc. Steklov Inst. Math. 290, 256–263 (2015)].

    MATH  Google Scholar 

  12. G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π,” in The Riemann Problem, Complete Integrability and Arithmetic Applications: Proc. Semin. IHES and Columbia Univ., 1979–1980 (Springer, Berlin, 1982), Lect. Notes Math. 925, pp. 299–322.

    Chapter  Google Scholar 

  13. K. Driver, “Nondiagonal quadratic Hermite–Padé approximation to the exponential function,” J. Comput. Appl. Math. 65, 125–134 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Gonchar, “Rational approximation of analytic functions,” Sovrem. Probl. Mat. 1, 83–106 (2003) [Proc. Steklov Inst. Math. 272 (Suppl. 2), S44–S57 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 157, 31–48 (1981) [Proc. Steklov Inst. Math. 157, 31–50 (1983)].

    MATH  Google Scholar 

  16. A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions,” Mat. Sb. 134 (3), 306–352 (1987) [Math. USSR, Sb. 62, 305–348 (1989)].

    MATH  Google Scholar 

  17. C. Hermite, “Sur la fonction exponentielle,” C. R. Acad. Sci. Paris 77, 18–24, 74–79, 226–233, 285–293 (1873).

    MATH  Google Scholar 

  18. C. Hermite, “Sur la généralisation des fractions continues algébriques,” Ann. Mat. Pura Appl., Ser. 2, 21, 289–308 (1893).

    Article  MATH  Google Scholar 

  19. V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators,” Mat. Sb. 185 (6), 79–100 (1994) [Russ. Acad. Sci., Sb. Math. 82 (1), 199–216 (1995)].

    MATH  Google Scholar 

  20. A. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert,” C. R., Math., Acad. Sci. Paris 336 (11), 893–896 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. B. J. Kuijlaars, H. Stahl, W. Van Assche, and F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function,” J. Comput. Appl. Math. 207 (2), 227–244 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. B. J. Kuijlaars, W. Van Assche, and F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: A Riemann–Hilbert approach,” Constr. Approx. 21 (3), 351–412 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu. A. Labych and A. P. Starovoitov, “Trigonometric Padé approximants for functions with regularly decreasing Fourier coefficients,” Mat. Sb. 200 (7), 107–130 (2009) [Sb. Math. 200, 1051–1074 (2009)].

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field,” Mat. Sb. 206 (2), 41–56 (2015) [Sb. Math. 206, 211–224 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  25. G. López Lagomasino, S. Medina Peralta, and U. Fidalgo Prieto, “Hermite–Padé approximation for certain systems of meromorphic functions,” Mat. Sb. 206 (2), 57–76 (2015) [Sb. Math. 206, 225–241 (2015)].

    Article  MathSciNet  Google Scholar 

  26. K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I, II,” J. Reine Angew. Math. 166, 118–136, 137–150 (1931, 1932).

    MathSciNet  MATH  Google Scholar 

  27. K. Mahler, “Perfect systems,” Compos. Math. 19 (2), 95–166 (1968).

    MathSciNet  MATH  Google Scholar 

  28. M. Marden, Geometry of Polynomials (Am. Math. Soc., Providence, RI, 1966).

    MATH  Google Scholar 

  29. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988; Am. Math. Soc., Providence, RI, 1991).

    MATH  Google Scholar 

  30. G. Pólya and G. Szeg˝o, Problems and Theorems in Analysis, Vol. 1: Series, Integral Calculus, Theory of Functions (Springer, Berlin, 1978).

    Google Scholar 

  31. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Nauka, Moscow, 1981; Gordon & Breach, New York, 1986).

    MATH  Google Scholar 

  32. V. N. Rusak and A. P. Starovoitov, “Padé approximants for entire functions with regularly decreasing Taylor coefficients,” Mat. Sb. 193 (9), 63–92 (2002) [Sb. Math. 193, 1303–1332 (2002)].

    Article  MathSciNet  MATH  Google Scholar 

  33. E. B. Saff and R. S. Varga, “On the zeros and poles of Padé approximants to ez. II,” in Padé and Rational Approximation. Theory and Applications: Proc. Int. Symp. Univ. S. Fla., 1976, Ed. by E. B. Saff and R. S. Varga (Academic, New York, 1977), pp. 195–213.

    Chapter  Google Scholar 

  34. H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function,” Electron. Trans. Numer. Anal. 14, 195–222 (2002).

    MathSciNet  MATH  Google Scholar 

  35. H. Stahl, “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function,” Constr. Approx. 23 (2), 121–164 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. P. Starovoitov, “On the properties of Hermite–Padé approximants to the system of Mittag-Leffler functions,” Dokl. Nats. Akad. Nauk Belarusi 57 (1), 5–10 (2013).

    MathSciNet  MATH  Google Scholar 

  37. A. P. Starovoitov, “Hermite–Padé approximants to the system of Mittag-Leffler functions,” Probl. Fiz. Mat. Tekh., No. 1, 81–87 (2013).

    MATH  Google Scholar 

  38. A. P. Starovoitov, “Hermitian approximation of two exponential functions,” Izv. Saratov. Univ., Ser.: Mat., Mekh., Inf. 13 (1(2)), 87–91 (2013).

    MATH  Google Scholar 

  39. A. P. Starovoitov, “The asymptotic form of the Hermite–Padé approximations for a system of Mittag-Leffler functions,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 59–68 (2014) [Russ. Math. 58 (9), 49–56 (2014)].

    MATH  Google Scholar 

  40. A. P. Starovoitov and E. P. Kechko, “On localization of the zeroes of Hermite–Padé approximants to exponential functions,” Probl. Fiz. Mat. Tekh., No. 3, 84–89 (2015).

    MATH  Google Scholar 

  41. A. P. Starovoitov and E. P. Kechko, “On an extremal property of Hermite–Padé approximants to exponential functions,” Dokl. Nats. Akad. Nauk Belarusi 60 (1), 5–11 (2016).

    MATH  Google Scholar 

  42. A. P. Starovoitov and E. P. Kechko, “Upper bounds for the moduli of zeros of Hermite–Padé approximations for a set of exponential functions,” Mat. Zametki 99 (3), 409–420 (2016) [Math. Notes 99, 417–425 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  43. A. P. Starovoitov and N. A. Starovoitova, “Padé approximants of the Mittag-Leffler functions,” Mat. Sb. 198 (7), 109–122 (2007) [Sb. Math. 198, 1011–1023 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  44. A. P. Starovoitow, N. A. Starovoitowa, and N. V. Ryabchenko, “Padé approximants of special functions,” J. Math. Sci. 187 (1), 77–85 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  45. S. P. Suetin, “Padé approximants and efficient analytic continuation of a power series,” Usp. Mat. Nauk 57 (1), 45–142 (2002) [Russ. Math. Surv. 57, 43–141 (2002)].

    Article  MATH  Google Scholar 

  46. S. P. Suetin, “On the existence of nonlinear Padé–Chebyshev approximations for analytic functions,” Mat. Zametki 86 (2), 290–303 (2009) [Math. Notes 86, 264–275 (2009)].

    Article  MATH  Google Scholar 

  47. S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation,” Usp. Mat. Nauk 70 (5), 121–174 (2015) [Russ. Math. Surv. 70, 901–951 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  48. S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions,” Usp. Mat. Nauk 72 (2), 191–192 (2017) [Russ. Math. Surv. 72, 375–377 (2017)].

    Article  MATH  Google Scholar 

  49. G. Szegö, “Über eine Eigenschaft der Exponentialreihe,” Sitzungsber. Berl. Math. Ges. 23, 50–64 (1924).

    MATH  Google Scholar 

  50. L. N. Trefethen, “The asymptotic accuracy of rational best approximations to ez on a disk,” J. Approx. Theory 40 (4), 380–383 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  51. W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence,” in Continued Fractions: From Analytic Number Theory to Constructive Approximation: Proc. Conf. Univ. Missouri, 1998 (Am. Math. Soc., Providence, RI, 1999), Contemp. Math. 236, pp. 325–342.

    Chapter  Google Scholar 

  52. J. L. Walsh, “On the location of the roots of certain types of polynomials,” Trans. Am. Math. Soc. 24 (3), 163–180 (1922).

    Article  MathSciNet  Google Scholar 

  53. F. Wielonsky, “Asymptotics of diagonal Hermite–Padé approximants to ez,” J. Approx. Theory 90 (2), 283–298 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  54. F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function,” J. Approx. Theory 131 (1), 100–148 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Starovoitov.

Additional information

Original Russian Text © A.P. Starovoitov, E.P. Kechko, 2017, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Vol. 298, pp. 338–355.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starovoitov, A.P., Kechko, E.P. On some properties of Hermite–Padé approximants to an exponential system. Proc. Steklov Inst. Math. 298, 317–333 (2017). https://doi.org/10.1134/S0081543817060190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817060190

Navigation