Skip to main content
Log in

Pontryagin’s theorem and spectral stability analysis of solitons

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The main result of the present paper is the use of Pontryagin’s theorem for proving a criterion, based on the difference in the number of negative eigenvalues between two self-adjoint operators L and L +, for the linear part of a Hamiltonian system to have eigenvalues with strictly positive real part (unstable eigenvalues).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Il’ichev and A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation,” Theor. Comp. Fluid Dyn. 3(6), 307–326 (1992).

    Article  MATH  Google Scholar 

  2. F. Dias and E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg-de Vries equation,” Phys. Lett. A 263(1–2), 98–104 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. E. Pelinovsky and J. Yang, “Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations,” Stud. Appl.Math. 115(1), 109–137 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,” Comm. Partial Differential Equations 29(7–8), 1051–1095 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Sandstede, “Stability of multiple-pulse solutions,” Trans. Amer.Math. Soc. 350(2), 429–472 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. Kodama and D. Pelinovsky, “Spectral stability and time evolution of N-solitons in the KdV hierarchy,” J. Phys. A.Math. Gen. 38(27), 6129–6140 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I,” J. Funct. Anal. 74(1), 160–197 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II,” J. Funct. Anal. 94(2), 308–348 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Chugunova and D. Pelinovsky, “Block-diagonalization of the symmetric first-order coupled-mode system,” SIAMJ.Appl. Dyn. Syst. 5(1), 66–83 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Grillakis, “Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system,” Comm. Pure Appl.Math. 43(3), 299–333 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  11. C. K. R. T. Jones, “An instabilitymechanism for radially symmetric standing waves of a nonlinear Schrödinger equation,” J. Differential Equations 71(1), 34–62 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein-Gordon equations,” Comm. Pure Appl.Math. 41(6), 747–774 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. E. Pelinovsky, “Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055), 783–812 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Cuccagna, D. Pelinovsky, and V. Vougalter, “Spectra of positive and negative energies in the linearized NLS problem,” Comm. Pure Appl. Math. 58(1), 1–29 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. K. McLeod, “Uniqueness of positive radial solutions of Δu + f(u) = 0 in ℝn. II,” Trans. Amer. Math. Soc. 339(2), 495–505 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. S. Pontryagin, “Hermitian operators in spaces with indefinite metric,” Izv. Akad. Nauk SSSR Ser. Mat. 8(6), 243–280 (1944).

    MATH  Google Scholar 

  17. T. Y. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  18. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  19. T. Ya. Azizov, A. Dijksma, and V. L. Khatskevich, “On the defect of noncontractive operators in Krein spaces: a new formula and some applications,” in Contributions to Operator Theory in Spaces with an Indefinite Metric,Oper. Theory Adv. Appl. (Birkhauser, Basel, 1998), Vol. 106, pp. 91–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ya. Azizov.

Additional information

Original Russian Text © T. Ya. Azizov, M. V. Chugunova, 2009, published in Matematicheskie Zametki, 2009, Vol. 86, No. 5, pp. 643–658.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azizov, T.Y., Chugunova, M.V. Pontryagin’s theorem and spectral stability analysis of solitons. Math Notes 86, 612–624 (2009). https://doi.org/10.1134/S0001434609110029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434609110029

Key words

Navigation