Skip to main content
Log in

Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, the authors of the article (Zahran and khater in Appl Math Model 40:1769–1775, 2016) have applied the modified extended tanh-function method to the nonlinear Bogoyavlenskii equations and found very few special solutions. In our article, we generalize this work by showing that the modified extended tanh-function method is just a special case of the generalized Riccati equation mapping method. Many families of exact solutions of the nonlinear Bogoyavlenskii equations have been found using the generalized Riccati equation mapping method. Bright–dark–singular soliton solutions and other solutions are obtained. Comparing our results with the well-known results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdou, M.A.: The extended tanh method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988–996 (2007)

    MATH  MathSciNet  Google Scholar 

  • Biswas, A.: 1-Soliton solution of Benjamin–Bona–Mahoney equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2744–2746 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bogoyavlenskii, O.I.: Breaking solitons in 2+1-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)

    Article  Google Scholar 

  • Clarkson, P.A., Gordoa, P.R., Pickering, A.: Multi-component equations associated to non-isospectral scattering problems. Inverse Prob. 13, 1463–1476 (1997)

    Article  ADS  MATH  Google Scholar 

  • El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani: Integral methods to solve the variable coefficient NLSE. Z. Naturforsch. 68a, 255–260 (2013)

    Article  Google Scholar 

  • Estévez, P.G., Prada, J.: A generalization of the sine-Gordon equation to (2+1)-dimensions. J. Nonlinear Math. Phys. 11, 164–179 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  ADS  MATH  Google Scholar 

  • Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)

    MATH  MathSciNet  Google Scholar 

  • Kudryashov, N., Pickering, A.: Rational solutions for Schwarzian integrable hierarchies. J. Phys. A Math. Gen. 31, 9505–9518 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    Article  ADS  MATH  Google Scholar 

  • Miura, M.: Bäcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  • Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: New exact solutions for the variable coefficient two-dimensional Burger equation without restrictions on the variable coefficient. Nonlinear Sci. Lett. A 4, 1–7 (2013)

    Google Scholar 

  • Moatimid, G.M., El-Shiekh, R.M., Al-Nowehy, Abdul-Ghani A.A.H.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)

    MATH  MathSciNet  Google Scholar 

  • Moussa, M.H.M., El-Shiekh, R.M.: Similarity reduction and similarity solutions of Zabolotskay–Khoklov equation with dissipative term via symmetry method. Phys. A 371, 325–335 (2006)

    Article  Google Scholar 

  • Najafi, M., Arbabi, S., Najafi, M.: New exact solutions of (2+1)-dimensional Bogoyavlenskii equation by the sine–cosine method. Int. J. Basic Appl. Sci. 1, 490–497 (2012)

    Google Scholar 

  • Parkes, E., Duffy, B.: An automated tanh-function method for finding solitary wave solution to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    Article  ADS  MATH  Google Scholar 

  • Peng, Y.Z., Shen, M.: On exact solutions of Bogoyavlenskii equation. Pramana J. Phys. 67, 449–456 (2006)

    Article  ADS  Google Scholar 

  • Sarma, A.K., Saha, M., Biswas, A.: Optical solitons with power law nonlinearity and Hamiltonian perturbations: an exact solution. J. Infrared Millim. Terahz Waves 31, 1048–1056 (2010)

    Article  Google Scholar 

  • Wang, M., Li, X., Zhang, J.: The \(\left( G^{\prime }/G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation. Appl. Math. Comput. 199, 133–183 (2008)

    MATH  MathSciNet  Google Scholar 

  • Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine–cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Zahran, E.H.M., khater, M.M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 40, 1769–1775 (2016)

    Article  MathSciNet  Google Scholar 

  • Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl. Math. Comput. 218, 3962–3964 (2011)

    MATH  MathSciNet  Google Scholar 

  • Zayed, E.M.E.: Abdul-Ghani Al-Nowehy, Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schr ödinger equation. Optik 127, 4970–4983 (2016)

    Article  ADS  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The multiple exp-function method and the linear superposition principle for solving the (2+1)-Dimensional Calogero–Bogoyavlenskii–Schiff equation. Z. Naturforsch. 70a, 775–779 (2015)

    Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: The modified simple equation method, the exp-function method and the method of soliton ansatz for solving the long–short wave resonance equations. Z. Naturforsch. 71a, 103–112 (2016)

    Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions of the Biswas–Milovic equation, the ZK (m, n, k) equation and the K (m, n) equation using the generalized Kudryashov method. Open Phys. 14, 129–139 (2016)

    Article  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact traveling wave solutions for nonlinear PDEs in mathematical physics using the generalized Kudryashov method. Serbian J. Electr. Eng. 13, 203–227 (2016)

    Article  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Solitons and other solutions for the generalized KdV–mKdV equation with higher-order nonlinear terms. J. Part. Differ. Equ. 29, 218–245 (2016)

    MATH  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Al-Nowehy, Abdul-Ghani: Exact solutions for the perturbed nonlinear Schrödinger equation with power law nonlinearity and Hamiltonian perturbed terms. Optik 139, 123–144 (2017)

    Article  ADS  Google Scholar 

  • Zayed, E.M.E., Amer, Y.A.: The modified simple equation method for solving nonlinear diffusive predator-prey system and Bogoyavlenskii equations. Int. J. Phys. Sci. 10, 133–141 (2015)

    Article  Google Scholar 

  • Zayed, E.M.E., Arnous, A.H.: DNA dynamics studied using the homogeneous balance method. Chin. Phys. Lett. 29, 080203–080205 (2012)

    Article  Google Scholar 

  • Zayed, E.M.E., Arnous, A.H.: Many exact solutions for nonlinear dynamics of DNA model using the generalized Riccati equation mapping method. Sci. Res. Essay 8, 340–346 (2013)

    Google Scholar 

  • Zayed, E.M.E., Gepreel, K.A.: The \(\left( G^{\prime }/G\right)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502–013513 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved Riccati equation mapping method for constructing many families of exact solutions for a nonlinear partial differential equation of nanobiosciences. Int. J. Phys. Sci. 8, 1246–1255 (2013)

    Google Scholar 

  • Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The Jacobi elliptic function expansion method and its applications for solving the higher order dispersive nonlinear Schrödinger equation. Sci. J. Math. Res. 4, 53–72 (2014)

    Google Scholar 

  • Zayed, E.M.E., Amer, Y.A., Shohib, R.M.A.: The improved generalized Riccati equation mapping method and its application for solving a nonlinear partial differential equation (PDE) describing the dynamics of ionic currents along microtubules. Sci. Res. Essay 9, 238–248 (2014)

    Article  Google Scholar 

  • Zayed, E.M.E., Moatimid, G.M., Al-Nowehy, A.G.: The generalized Kudryashov method and its applications for solving nonlinear PDEs in mathematical physics. Sci. J. Math. Res. 5, 19–39 (2015)

    Google Scholar 

  • Zhang, J.L., Wang, M.L., Li, X.Z.: The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear Schrödinger equation. Phys. Lett. A 357, 188–195 (2006)

    Article  ADS  MATH  Google Scholar 

  • Zhou, Q., Zhu, Q., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Romanian Acad. Ser. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  • Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elsayed M. E. Zayed or Abdul-Ghani Al-Nowehy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, E.M.E., Al-Nowehy, AG. Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt Quant Electron 49, 359 (2017). https://doi.org/10.1007/s11082-017-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1195-0

Keywords

Navigation