Skip to main content
Log in

Two-Dimensional Surface Periodic Flows of an Incompressible Fluid in Various Models of the Medium

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A comparative analysis of the properties of two-dimensional infinitesimal periodic perturbations propagating over the incompressible fluid surface in various representations of the medium density profiles is carried out. Viscous or ideal liquids stratified and homogeneous in density are considered. Calculations are carried out by methods of the theory of singular perturbations. Dispersion relations and dependences of phase and group velocities for surface waves in physically observed variables are given. The change in the meaning of dispersion relations during the transition from ideal liquids to viscous and from homogeneous to stratified is shown. Taking into account the influence of electric charge does not qualitatively change the nature of two-dimensional dispersion relations. An increase in the surface density of the electric charge leads to a decrease in the wavelength at a fixed frequency and has no noticeable effect on the fine structure of the periodic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Brunt, D., The period of simple vertical oscillations in the atmosphere, Q. J. R. Meteorol. Soc., 1927, vol. 53, pp. 30–32.

    Article  Google Scholar 

  2. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, Oxford: Clarendon Press, 1961.

  3. Chashechkin, Yu.D., Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation, Mathematics, 2021a, vol. 9, no. 586.

  4. Chashechkin, Y.D., Foundations of engineering mathematics applied for fluid flows, Axioms, 2021b, vol. 10, no. 4, p. 286.

    Article  Google Scholar 

  5. Chashechkin, Yu.D., Transfer of the substance of a colored drop in a liquid layer with travelling plane gravity–capillary waves, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 2, pp. 188–197.

    Article  Google Scholar 

  6. Chashechkin, Yu.D. and Ochirov, A.A., Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field, Axioms, 2022, vol. 11, no. 8, p. 402.

    Article  Google Scholar 

  7. Druzhinin, O.A., On the transfer of microbubbles by surface waves, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 5, pp. 507–515.

    Article  Google Scholar 

  8. Euler, L., Principes généraux du mouvement des fluids, Mém. l’Acad. Sci. Berlin, 1757, vol. 11, pp. 274–315.

    Google Scholar 

  9. Fedorov, K.N., Tonkaya tekhmokhalinnaya struktura Okeana (Fine Thermohaline Structure of the Ocean), Leningrad: Gidrometeoizdat, 1976.

  10. Feistel, R., Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond, Ocean. Sci., 2018, vol. 14, pp. 471–502.

    Article  CAS  Google Scholar 

  11. Gavrilov, N.M. and Popov, A.A., Modeling seasonal variations in the intensity of internal gravity waves in the lower thermosphere, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 1, pp. 68–79.

    Article  Google Scholar 

  12. Harvey, A.H., Hrubý, J., and Meier, K., Improved and always improving: Reference formulations for thermophysical properties of water, J. Phys. Chem. Ref. Data, 2023, vol. 52, p. 011501.

    Article  CAS  Google Scholar 

  13. Kistovich, A.V. and Chashechkin, Yu.D., Linear theory of the propagation of internal wave beams in an arbitrarily stratified liquid, J. Appl. Mech. Tech. Phys., 1998, vol. 39, no. 5, pp. 729–737.

    Article  Google Scholar 

  14. Kistovich, A.V. and Chashechkin, Yu.D., Dynamics of gravity–capillary waves on the surface of a nonuniformly heated fluid, Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 1, pp. 95–102.

    Article  Google Scholar 

  15. Kochin, N.E., Kibel’, I.A., and Roze, I.V., Teoreticheskaya gidromekhanika (Theoretical Fluid Mechanics), Moscow: Fizmatlit, 1963.

  16. Lighthill, J., Waves in Fluids, Cambridge: Cambridge Univ. Press, 1977; Moscow: Mir, 1981.

  17. Landau, L.D. and Lifshits, E.M., Mekhanika sploshnykh sred. Gidrodinamika i teoriya uprugosti (Mechanics of Continuous Media. Fluid Dynamics and Theory of Elasticity), Moscow–Leningrad: OGIZ GITTL, 1944, vol. 3.

  18. Le Blond, P. and Mysak, L., Waves in the Ocean, Elsevier, 1977; Moscow: Mir, 1981.

  19. Lamb, H., Hydrodynamics, New York: Dover, 1945; Moscow-Leningrad: GITTL, 1949.

    Google Scholar 

  20. Nayfeh, A., Introduction to Perturbation Methods, New York: Wiley-VCH, 1981; Moscow: Mir, 1984.

  21. Ochirov, A.A. and Chashechkin, Yu.D., Two-dimensional periodic waves in an inviscid continuously stratified fluid, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 5, pp. 450–458.

    Article  Google Scholar 

  22. Ochirov, A.A. and Chashechkin, Yu.D., Wave motion in a viscous homogeneous fluid with a surface electric charge, Fluid Dyn., 2023, vol. 58, no. 7, pp. 1318–1327.

    Article  Google Scholar 

  23. Popov, N.I., Fedorov, K.N., and Orlov, V.M., Morskaya voda. Spravochnoe rukovodstvo (Seawater: A Reference Book), Moscow: Nauka, 1979.

  24. Rayleigh, R., Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc., 1882, vol. 1, no. 1, pp. 170–177.

    Article  Google Scholar 

  25. Sobolev, S.L., On a new problem of mathematical physics, Izv. Akad. Nauk SSSR, Ser. Mat., 1954, vol. 18, no. 1, pp. 3–50.

    Google Scholar 

  26. Stokes, G.G., On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic bodies, Trans. Cambridge Philos. Soc., 1845, vol. 8, pp. 287–305.

    Google Scholar 

  27. Stokes, G.G., On the theory of oscillatory waves, Trans. Cambridge. Philos. Soc., 1847, vol. 8, pp. 441–455.

    Google Scholar 

  28. Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge. Philos. Soc., 1851, vol. 9, pp. 1–141.

    Google Scholar 

  29. Väisälä, V., Über die Wirkung der Windschwankungen auf die Pilotbeoachtungen, Soc. Sci. Fenn. Comment. Phys. Math., 1925, vol. 2, pp. 19–37.

    Google Scholar 

  30. Zaitseva, D.V., Kallistratova, V.S., Lyulyukin, R.D., et al., Submesoscale wavelike structures in the atmospheric boundary layer and their parameters according to sodar measurement data in the Moscow region, Izv., Atmos. Ocean. Phys., 2022, vol. 59, no. 3, pp. 233–242.

    Article  Google Scholar 

Download references

Funding

This work was carried out with financial support from the Russian Science Foundation, project 19-19-00598-P “Hydrodynamics and Energetics of Drops and Droplet Jets: Formation, Movement, Decay, Interaction with the Contact Surface” (https://rscf.ru/project/19-19-00598/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ochirov or Yu. D. Chashechkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Equation (25) breaks down into three independent equations:

$${{k}_{{*x}}} = 0,$$
(A.1)
$$\frac{{1 - i}}{{\sqrt {2\varepsilon } }}\sqrt {{{\omega }_{*}}} - {{k}_{{*x}}}\frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}} = 0,$$
(A.2)
$$\begin{gathered} \frac{{1 - i}}{{\sqrt {2\varepsilon } }}\sqrt {{{\omega }_{*}}} {{k}_{{*x}}} + \left( {\frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}} - \frac{{1 - i}}{{\sqrt 2 }}W\delta \sqrt {{{\omega }_{*}}} } \right)k_{{*x}}^{2} + \left( {\frac{{1 - i}}{{\sqrt 2 }}{{\delta }^{2}}\sqrt {{{\omega }_{*}}} k_{{*x}}^{3} - \frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}}\delta Wk_{{*x}}^{3} - \frac{{1 - i}}{{\sqrt 2 }}\omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}\sqrt {\omega _{*}^{2} - 1} } \right) \\ \times \,\,\sqrt \varepsilon + \left( {{{k}_{{*x}}}\left( {1 - \omega _{*}^{2}} \right) + \frac{{{{\delta }^{2}}\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}}k_{{*x}}^{4}} \right)\varepsilon = 0. \\ \end{gathered} $$
(A.3)

Solutions of equations (A.1)–(A.3) have the form

$${{k}_{{*x}}} = 0,$$
(A.4)
$${{k}_{{*x}}} = \frac{{\left( {1 - i} \right)\omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}{{\sqrt {2\varepsilon \left( {\omega _{*}^{2} - 1} \right)} }},$$
(A.5)
$${{k}_{{*x}}} = - \frac{1}{2}\sqrt {{{\eta }_{W}}} - \frac{{{{\mu }_{W}}{{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} - \frac{1}{2}\sqrt { - {{\eta }_{W}} + {{\chi }_{W}} - \frac{{{{\varpi }_{W}}}}{{4\sqrt {{{\eta }_{W}}} }}} ,$$
(A.6)
$${{k}_{{*x}}} = - \frac{1}{2}\sqrt {{{\eta }_{W}}} - \frac{{{{\mu }_{W}}{{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} + \frac{1}{2}\sqrt { - {{\eta }_{W}} + {{\chi }_{W}} - \frac{{{{\varpi }_{W}}}}{{4\sqrt {{{\eta }_{W}}} }}} ,$$
(A.7)
$${{k}_{{*x}}} = \frac{1}{2}\sqrt {{{\eta }_{W}}} - \frac{{{{\mu }_{W}}{{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} - \frac{1}{2}\sqrt { - {{\eta }_{W}} + {{\chi }_{W}} + \frac{{{{\varpi }_{W}}}}{{4\sqrt {{{\eta }_{W}}} }}} ,$$
(A.8)
$${{k}_{{*x}}} = \frac{1}{2}\sqrt {{{\eta }_{W}}} - \frac{{{{\mu }_{W}}{{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} + \frac{1}{2}\sqrt { - {{\eta }_{W}} + {{\chi }_{W}} + \frac{{{{\varpi }_{W}}}}{{4\sqrt {{{\eta }_{W}}} }}} ,$$
(A.9)
$$\begin{matrix} {{\eta }_{W}}=\frac{1}{12{{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}{{\delta }^{4}}{{\varepsilon }^{2}}{{\left( \omega _{*}^{2}-1 \right)}^{{3}/{2}\;}}}\left[ {{W}^{2}}{{\delta }^{2}}\sqrt{\omega _{*}^{2}-1}\left( 3\varepsilon {{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}\left( \omega _{*}^{2}-1 \right)-{{2}^{{1}/{3}\;}}\times 4i\omega _{*}^{3} \right) \right. \\ -\,\,\left( 1-i \right){{2}^{{1}/{3}\;}}W\delta {{\omega }_{*}}\left( \omega _{*}^{2}-1 \right)\left( -2\sqrt{2}\sqrt{{{\omega }_{*}}}-{{2}^{{1}/{6}\;}}{{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}{{\delta }^{2}}\varepsilon \sqrt{{{\omega }_{*}}}+6{{\varepsilon }^{{3}/{2}\;}}\left( 1+i \right)\left( \omega _{*}^{2}-1 \right) \right) \\ +\,\,\sqrt{\omega _{*}^{2}-1}\left( {{2}^{{1}/{3}\;}}\times 4\left( \omega _{*}^{2}-1 \right)+{{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}{{\delta }^{4}}\varepsilon \left( -3i+{{2}^{{2}/{3}\;}}\times 2\varepsilon {{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}\left( \omega _{*}^{2}-1 \right) \right) \right. \\ \left. \left. +\,\,{{\delta }^{2}}\left( {{2}^{{1}/{3}\;}}\times 12i\omega _{*}^{3}-8\varepsilon {{\left( {{\alpha }_{W}}+\sqrt{\alpha _{W}^{2}+4\beta _{W}^{3}} \right)}^{{1}/{3}\;}}\left( \omega _{*}^{2}-1 \right)-18\left( 1-i \right){{2}^{{5}/{6}\;}}{{\varepsilon }^{{3}/{2}\;}}{{\omega }^{{5}/{2}\;}}\left( \omega _{*}^{2}-1 \right) \right) \right) \right], \\ {{\mu }_{W}}=\frac{\left( 1-i \right)}{\sqrt{2}}{{\delta }^{2}}\sqrt{\varepsilon }{{\omega }_{*}}-\frac{W\delta \sqrt{\varepsilon }\sqrt{\omega _{*}^{2}-1}}{{{\omega }_{*}}}, \\ \end{matrix}$$
$${{\chi }_{W}} = \frac{{3\mu _{W}^{2}\omega _{*}^{2}}}{{4{{\delta }^{4}}{{\varepsilon }^{2}}\left( {\omega _{*}^{2} - 1} \right)}} - \frac{{2{{\omega }_{*}}}}{{{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }}\left( {\frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}} - \frac{{\left( {1 - i} \right)W\delta \sqrt {{{\omega }_{*}}} }}{{\sqrt 2 }}} \right),$$
$${{\varpi }_{W}} = - \frac{{\mu _{W}^{3}\omega _{*}^{3}}}{{{{\delta }^{6}}{{\varepsilon }^{3}}{{{\left( {\omega _{*}^{2} - 1} \right)}}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}} - \frac{{2\sqrt 2 \left( {1 - i} \right)W{{\mu }_{W}}\omega _{*}^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}}}}}{{{{\delta }^{3}}{{\varepsilon }^{2}}\left( {\omega _{*}^{2} - 1} \right)}} + \frac{{4{{\mu }_{W}}{{\omega }_{*}}}}{{{{\delta }^{4}}{{\varepsilon }^{2}}\sqrt {\omega _{*}^{2} - 1} }} - \frac{{8{{\omega }_{*}}}}{{{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }}\left( {\varepsilon \left( {1 - \omega _{*}^{2}} \right) + \frac{{\left( {1 - i} \right)\sqrt {{{\omega }_{*}}} }}{{\sqrt 2 \sqrt \varepsilon }}} \right),$$
$${{\beta }_{W}} = - \frac{1}{{{{\delta }^{4}}{{\varepsilon }^{2}}}} + \frac{{9\left( {1 - i} \right)\omega _{*}^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}}}\left( {\omega _{*}^{2} - 1} \right)}}{{\sqrt 2 {{\delta }^{2}}\sqrt \varepsilon \left( {\omega _{*}^{2} - 1} \right)}} + \frac{{i{{W}^{2}}\omega _{*}^{3} - 3i\omega _{*}^{3}}}{{{{\delta }^{2}}{{\varepsilon }^{2}}\left( {\omega _{*}^{2} - 1} \right)}} + \frac{{W\left( {\sqrt 2 \left( {i - 1} \right)\omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}} + 6{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}{{\omega }_{*}}\left( {\omega _{*}^{2} - 1} \right)} \right)}}{{2{{\delta }^{3}}{{\varepsilon }^{2}}\sqrt {\omega _{*}^{2} - 1} }},$$
$$\begin{gathered} {{\alpha }_{W}} = \frac{2}{{{{\delta }^{6}}{{\varepsilon }^{3}}}} + \frac{{\left( {1 + i} \right)\sqrt 2 W\left( { - 9 + 2{{W}^{2}}} \right)\omega _{*}^{{{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-0em} 2}}} + 54iW{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}\omega _{*}^{4}\left( {\omega _{*}^{2} - 1} \right)}}{{2{{\delta }^{3}}{{\varepsilon }^{3}}{{{\left( {\omega _{*}^{2} - 1} \right)}}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}} \\ + \,\,\frac{{3\left( {1 + i} \right)\omega _{*}^{2}}}{{2{{\delta }^{4}}}}\left( {\frac{{3i\sqrt 2 \left( { - 3 + 2{{W}^{2}}} \right)\sqrt {{{\omega }_{*}}} }}{{{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}} + \frac{{\left( {1 + i} \right)\left( { - 6 + {{W}^{2}}} \right){{\omega }_{*}}}}{{{{\varepsilon }^{3}}\left( {\omega _{*}^{2} - 1} \right)}} + 9\left( {1 - i} \right)\left( {\omega _{*}^{2} - 1} \right)} \right) \\ + \,\,\frac{{27\left( {1 + i} \right){{\omega }^{{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0em} 2}}}}}}{{\sqrt 2 {{\delta }^{2}}{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}\left( {\omega _{*}^{2} - 1} \right)}} + \frac{{W\left( {3\left( {1 - i} \right)\sqrt 2 \omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}} - 18{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}{{\omega }_{*}}\left( {\omega _{*}^{2} - 1} \right)} \right)}}{{2{{\delta }^{5}}{{\varepsilon }^{3}}\sqrt {\omega _{*}^{2} - 1} }}. \\ \end{gathered} $$

Appendix B

Equation (36) breaks down into three independent equations:

$${{k}_{{*x}}} = 0,$$
(B.1)
$$\frac{{1 - i}}{{\sqrt {2\varepsilon } }}\sqrt {{{\omega }_{*}}} - {{k}_{{*x}}}\frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}} = 0,$$
(B.2)
$$\begin{gathered} \frac{{1 - i}}{{\sqrt {2\varepsilon } }}\sqrt {{{\omega }_{*}}} {{k}_{{*x}}} + \frac{{\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}}k_{{*x}}^{2} + \left( {\frac{{1 - i}}{{\sqrt 2 }}{{\delta }^{2}}\sqrt {{{\omega }_{*}}} k_{{*x}}^{3} - \frac{{1 - i}}{{\sqrt 2 }}\omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}\sqrt {\omega _{*}^{2} - 1} } \right)\sqrt \varepsilon \\ + \,\,\left( {{{k}_{{*x}}}\left( {1 - \omega _{*}^{2}} \right) + \frac{{{{\delta }^{2}}\sqrt {\omega _{*}^{2} - 1} }}{{{{\omega }_{*}}}}k_{{*x}}^{4}} \right)\varepsilon = 0. \\ \end{gathered} $$
(B.3)

The solutions to Eqs. (B.1)–(B.3) will be written as follows:

$${{k}_{{*x}}} = 0,$$
(B.4)
$${{k}_{{*x}}} = \frac{{\left( {1 - i} \right)\omega _{*}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}{{\sqrt {2\varepsilon \left( {\omega _{*}^{2} - 1} \right)} }},$$
(B.5)
$${{k}_{{*x}}} = - \frac{1}{2}\sqrt \eta - \frac{{\mu {{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} - \frac{1}{2}\sqrt { - \eta + \chi - \frac{\varpi }{{4\sqrt \eta }}} ,$$
(B.6)
$${{k}_{{*x}}} = - \frac{1}{2}\sqrt \eta - \frac{{\mu {{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} + \frac{1}{2}\sqrt { - \eta + \chi - \frac{\varpi }{{4\sqrt \eta }}} ,$$
(B.7)
$${{k}_{{*x}}} = \frac{1}{2}\sqrt \eta - \frac{{\mu {{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} - \frac{1}{2}\sqrt { - \eta + \chi + \frac{\varpi }{{4\sqrt \eta }}} ,$$
(B.8)
$${{k}_{{*x}}} = \frac{1}{2}\sqrt \eta - \frac{{\mu {{\omega }_{*}}}}{{4{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }} + \frac{1}{2}\sqrt { - \eta + \chi + \frac{\varpi }{{4\sqrt \eta }}} ,$$
(B.9)
$$\begin{gathered} \eta = \frac{1}{{12{{{\left( {\alpha + \sqrt {{{\alpha }^{2}} + 4{{\beta }^{3}}} } \right)}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}}{{\delta }^{4}}{{\varepsilon }^{2}}{{{\left( {\omega _{*}^{2} - 1} \right)}}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}}\left[ {{{{\sqrt {\omega _{*}^{2} - 1} }}^{{}}}} \right. \\ \times \,\,\left( {{{2}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}} \times 4\left( {\omega _{*}^{2} - 1} \right) + {{{\left( {\alpha + \sqrt {{{\alpha }^{2}} + 4{{\beta }^{3}}} } \right)}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}}{{\delta }^{4}}\varepsilon \left( { - 3i + {{2}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0em} 3}}}} \times 2\varepsilon {{{\left( {\alpha + \sqrt {{{\alpha }^{2}} + 4{{\beta }^{3}}} } \right)}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}}\left( {\omega _{*}^{2} - 1} \right)} \right)} \right. \\ \left. {\left. { + \,\,{{\delta }^{2}}\left( {{{2}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}} \times 12i\omega _{*}^{3} - 8\varepsilon {{{\left( {\alpha + \sqrt {{{\alpha }^{2}} + 4{{\beta }^{3}}} } \right)}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}}\left( {\omega _{*}^{2} - 1} \right) - 18\left( {1 - i} \right){{2}^{{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}}}}{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}{{\omega }^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}}}}\left( {\omega _{*}^{2} - 1} \right)} \right)} \right)} \right], \\ \mu = \frac{{\left( {1 - i} \right)}}{{\sqrt 2 }}{{\delta }^{2}}\sqrt \varepsilon {{\omega }_{*}}, \\ \end{gathered} $$
$$\begin{gathered} \chi = \frac{{3{{\mu }^{2}}\omega _{*}^{2}}}{{4{{\delta }^{4}}{{\varepsilon }^{2}}\left( {\omega _{*}^{2} - 1} \right)}} - \frac{2}{{{{\delta }^{2}}\varepsilon }}, \\ \varpi = - \frac{{{{\mu }^{3}}\omega _{*}^{3}}}{{{{\delta }^{6}}{{\varepsilon }^{3}}{{{\left( {\omega _{*}^{2} - 1} \right)}}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}}} + \frac{{4\mu {{\omega }_{*}}}}{{{{\delta }^{4}}{{\varepsilon }^{2}}\sqrt {\omega _{*}^{2} - 1} }} - \frac{{8{{\omega }_{*}}}}{{{{\delta }^{2}}\varepsilon \sqrt {\omega _{*}^{2} - 1} }}\left( {\varepsilon \left( {1 - \omega _{*}^{2}} \right) + \frac{{\left( {1 - i} \right)\sqrt {{{\omega }_{*}}} }}{{\sqrt 2 \sqrt \varepsilon }}} \right), \\ \end{gathered} $$
$$\beta = - \frac{1}{{{{\delta }^{4}}{{\varepsilon }^{2}}}} + \frac{{9\left( {1 - i} \right)\omega _{*}^{{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2}}}}}{{\sqrt 2 {{\delta }^{2}}\sqrt \varepsilon }} - \frac{{3i\omega _{*}^{3}}}{{{{\delta }^{2}}{{\varepsilon }^{2}}\left( {\omega _{*}^{2} - 1} \right)}},$$
$$\alpha = \frac{2}{{{{\delta }^{6}}{{\varepsilon }^{3}}}} + \frac{{3\left( {1 + i} \right)\omega _{*}^{2}}}{{2{{\delta }^{4}}}}\left( { + 9\left( {1 - i} \right)\left( {\omega _{*}^{2} - 1} \right)} \right) + \frac{{27\left( {1 + i} \right){{\omega }^{{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0em} 2}}}}}}{{\sqrt 2 {{\delta }^{2}}{{\varepsilon }^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}}}}\left( {\omega _{*}^{2} - 1} \right)}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochirov, A.A., Chashechkin, Y.D. Two-Dimensional Surface Periodic Flows of an Incompressible Fluid in Various Models of the Medium. Izv. Atmos. Ocean. Phys. 60, 1–14 (2024). https://doi.org/10.1134/S0001433824700087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433824700087

Keywords:

Navigation