Skip to main content
Log in

Variant of the Local Similarity Theory and Approximations of Vertical Profiles of Turbulent Moments of the Atmospheric Convective Boundary Layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An approximation of the turbulent moments of the atmospheric convective layer is based on a variant of the local similarity theory using the concepts of the semiempirical theory of Prandtl turbulence. In the proposed variant of the local similarity theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used as basic parameters. This approach allows us to extend Prandtl’s theory to turbulent moments of vertical velocity and buoyancy and additionally offer more than ten new approximations. A comparison of the proposed approximation with other variants of the theory of local similarity is considered. It is shown that the selected basic parameters significantly improve the agreement between the local similarity approximations and experimental data. The approximations are consistent with observations in the turbulent convective layer of the atmosphere, the upper boundary of which nearly corresponds to the lower boundary of the temperature inversion. Analytical approximations of local similarity can find applications in the construction of high-order moment closures in the vortex of resolving numerical turbulence models, as well as in the construction of “mass-flux” parametrization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Abdella, K. and McFarlane, N., A new second-order turbulence closure scheme for the planetary boundary layer, J. Atmos. Sci., 1997, vol. 54, no. 14, pp. 1850–1867.

    Article  Google Scholar 

  2. Ansmann, A., Fruntke, J., and Engelmann, R., Updraft and downdraft characterization with Doppler lidar: Cloud-free versus cumuli-topped mixed layer, Atmos. Chem. Phys., 2010, vol. 10, no. 16, pp. 7845–7858.

    Article  CAS  Google Scholar 

  3. Barenblatt, G.I., Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, 1996.

    Book  Google Scholar 

  4. Buckingham, E., On physically similar systems; illustrations of the use of dimensional equations, Phys. Rev., 1914, vol. 4, no. 4, pp. 345–376.

    Article  Google Scholar 

  5. Caughey, S.J. and Palmer, S.G., Some aspects of turbulence structure through the depth of the convective boundary layer, Q. J. R. Meteorol. Soc., 1979, vol. 105, no. 446, pp. 811–827.

    Article  Google Scholar 

  6. Deardorff, J.W. and Willis, G.E., Further results from a laboratory model of the convective planetary boundary layer, Boundary-Layer Meteorol., 1985, vol. 32, no. 3, pp. 205–236.

    Article  Google Scholar 

  7. Degrazia, G.A., Maldaner, S., Buske, D., et al., Eddy diffusivities for the convective boundary layer derived from LES spectral data, Atmos. Pollut. Res., 2015, vol. 6, no. 4, pp. 605–611.

    Article  Google Scholar 

  8. Fodor, K. and Mellado, J.P., New insights into wind shear effects on entrainment in convective boundary layers using conditional analysis, J. Atmos. Sci., 2020, vol. 77, no. 9, pp. 3227–3248.

    Article  Google Scholar 

  9. Gryanik, V.M. and Hartmann, J., A turbulence closure for the convective boundary layer based on a two-scale mass-flux approach, J. Atmos. Sci., 2002, vol. 59, no. 18, pp. 2729–2744.

    Article  Google Scholar 

  10. Hanna, S.R., A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum, J. Atmos. Sci., 1968, vol. 25, no. 6, pp. 1026–1033.

    Article  Google Scholar 

  11. Hinze, J.O., Turbulence, New York: McGraw-Hill, 1975.

    Google Scholar 

  12. Holtslag, A.A.M. and Moeng, C.-H., Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 1991, vol. 48, no. 14, pp. 1690–1698.

    Article  Google Scholar 

  13. Kader, B.A. and Yaglom, A.M., Mean fields and fluctuation moments in unstably stratified turbulent boundary layers, J. Fluid Mech., 1990, vol. 212, no. 151, pp. 637–662.

    Article  Google Scholar 

  14. Kaimal, J.C., Wyngaard, J.C., Haugen, et al., Turbulence structure in the convective boundary layer, J. Atmos. Sci., 1976, vol. 33, no. 11, pp. 2152–2169.

    Article  Google Scholar 

  15. Kristensen, L., Lenschow, D.H., Gurarie, D., and Jensen, N.O., A simple model for the vertical transport of reactive species in the convective atmospheric boundary layer, Boundary-Layer Meteorol., 2010, vol. 134, no. 2, pp. 195–221.

    Article  Google Scholar 

  16. Lenschow, D.H., Wyngaard, J.C., and Pennell, W.T., Mean-field and second-moment budgets in a baroclinic, convective boundary layer, J. Atmos. Sci., 1980, vol. 37, no. 6, pp. 1313–1326.

    Article  Google Scholar 

  17. Lenschow, D.H., Lothon, M., Mayor, S., et al., A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation, Boundary-Layer Meteorol., 2012, vol. 143, no. 1, pp. 107–123.

    Article  Google Scholar 

  18. Mahrt, L., On the shallow motion approximations, J. Atmos. Sci., 1986, vol. 43, no. 10, pp. 1036–1044.

    Article  Google Scholar 

  19. Monin, A.S. and Yaglom, A.M., Mechanics of Turbulence. Statistical Fluid Mechanics, Cambridge: MIT Press, 1975.

    Google Scholar 

  20. Noh, Y., Cheon, W.G., Hong, S.Y., and Raasch, S., Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data, Boundary-Layer Meteorol., 2003, vol. 107, no. 2, pp. 401–427.

    Article  Google Scholar 

  21. Obukhov, A.M., Turbulence in a temperature-inhomogeneous atmosphere, Tr. Inst. Teor. Geofiz Akad. Nauk SSSR, 1946, vol. 1, pp. 95–115.

    Google Scholar 

  22. Prandtl, L., 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech., 1925, vol. 5, no. 2, pp. 136–139.

    Article  Google Scholar 

  23. Prandtl, L., Meteorologische Anwendung der Strömungslehre, Beitr. Phys. Freien Atmos., 1932, vol. 19, no. 3, pp. 188–202.

    Google Scholar 

  24. Schmidt, H. and Schumann, U., Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech., 1989, vol. 200, no. D11, pp. 511–562.

    Article  Google Scholar 

  25. Sorbjan, Z., On similarity in the atmospheric boundary layer, Boundary-Layer Meteorol., 1986, vol. 34, no. 4, pp. 377–397.

    Article  Google Scholar 

  26. Sorbjan, Z., Comments on “scaling” the atmospheric boundary “layer”, Boundary-Layer Meteorol., 1987, vol. 38, no. 4, pp. 411–413.

    Article  Google Scholar 

  27. Sorbjan, Z., Local similarity in the convective boundary layer (CBL), Boundary-Layer Meteorol., 1988, vol. 45, no. 3, pp. 237–250.

    Article  Google Scholar 

  28. Sorbjan, Z., Similarity scales and universal profiles of statistical moments in the convective boundary layer, J. Appl. Meteorol., 1990, vol. 29, no. 8, pp. 762–775.

    Article  Google Scholar 

  29. Sorbjan, Z., Evaluation of local similarity functions in the convective boundary layer, J. Appl. Meteorol., 1991, vol. 30, no. 12, pp. 1565–1583.

    Article  Google Scholar 

  30. Spiegel, E.A. and Veronis, G., On the Boussinesq approximation for a compressible fluid, Astrophys. J., 1960, vol. 131, no. 2, pp. 442–447.

    Article  Google Scholar 

  31. Vulfson, A., Equations of deep convection in a dry atmosphere, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1981, vol. 17, no. 8, pp. 873–876.

    Google Scholar 

  32. Vulfson, A.N. and Borodin, O.O., System of convective thermals as a generalized ensemble of Brownian particles, Phys.-Usp., 2016, vol. 59, no. 2, pp. 109–.

    Article  CAS  Google Scholar 

  33. Vulfson, A.N. and Borodin, O.O., Brownian ensemble of random-radius buoyancy vortices and Maxwell velocity distribution in a turbulent convective mixed-layer, Phys. Fluids, 2018, vol. 30, no. 9, p. 095103.

    Article  Google Scholar 

  34. Vulfson, A. and Nikolaev, P., Local similarity theory of convective turbulent layer using “spectral” Prandtl mixing length and second moment of vertical velocity, J. Atmos. Sci., 2022, vol. 79, no. 1, pp. 101–118.

    Article  Google Scholar 

  35. Vulfson, A., Volodin, I., and Borodin, O., Local similarity theory and universal profiles of turbulent characteristics in the convective boundary layer, Russ. Meteorol. Hydrol., 2004, no. 10, pp. 5–15.

  36. Wilson, D.K., An alternative function for the wind and temperature gradients in unstable surface layers, Boundary-Layer Meteorol., 2001, vol. 99, no. 1, pp. 151–158.

    Article  Google Scholar 

  37. Wood, C.R., Lacser, A., Barlow, J.F., et al., Turbulent flow at 190 m height above London during 2006–2008: A climatology and the applicability of similarity theory, Boundary-Layer Meteorol., 2010, vol. 137, no. 1, pp. 77–96.

    Article  Google Scholar 

  38. Zeman, O. and Lumley, J.L., Modeling buoyancy driven mixed layers, J. Atmos. Sci., 1976.

Download references

Funding

This work was carried out as part of State Task of the Institute of Problems of the Russian Academy of Sciences, topic no. FMWZ-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vulfson.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was prepared based on the oral report presented at the “Turbulence, Dynamics of the Atmosphere and Climate” IV All-Russian Conference with International Participation dedicated to the memory of Academician A.M. Obukhov (Moscow, November 22–24, 2022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vulfson, A.N., Nikolaev, P.V. Variant of the Local Similarity Theory and Approximations of Vertical Profiles of Turbulent Moments of the Atmospheric Convective Boundary Layer. Izv. Atmos. Ocean. Phys. 60, 48–58 (2024). https://doi.org/10.1134/S0001433824700038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433824700038

Keywords:

Navigation