Skip to main content
Log in

Further results from a laboratory model of the convective planetary boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The turbulence in a laboratory convective mixed layer is probed more extensively than in the preliminary study of Willis and Deardorff (1974), and results presented. Turbulence intensities, spectra and probability distributions using mixed-layer scaling compare favorably with similarly scaled field measurements not available or plentiful in 1974. However, the velocity spectra in the convection tank exhibit only a short inertial subrange due to the close proximity of the dissipation subrange to the energy-containing range.

The turbulence budget suggests that the convergence of the vertical transport of pressure fluctuations is a rather important term.

Results on the entrainment rate are also presented, using both mixed-layer scaling and local interfacial scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. J. and Ferreira, R. T. S.: 1979, ‘Higher Order Moments in Turbulent Thermal Convection’, 2nd Symposium on Turbulent Shear Flows, July 2–4, Imperial College, London, 12.1–12.5.

    Google Scholar 

  • Andreas, E. L.: 1979, ‘Analysis of Crossed Hot-Film Velocity Data’, DISA Information 24, 15–23.

    Google Scholar 

  • Batchelor, G. K.: 1959, ‘Small-scale Variations of Convected Quantities like Temperature in Turbulent Fluid. Part 1. General Discussion and Case of Small Conductivity’, J. Fluid Mech. 5, 113–133.

    Google Scholar 

  • Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in Atmos. Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 107–156.

  • Caughey, S. J. and Wyngaard, J. C.: 1979, ‘The Turbulence Kinetic Energy Budget in Convective Conditions’, Quart. J. Roy. Meteorol. Soc. 105, 231–239.

    Google Scholar 

  • Caughey, S. J., Kitchen, M., and Leighton, J. R.: 1983, ‘Turbulence Structure in Convective Boundary Layers and Implications for Diffusion’, Boundary-Layer Meteorol. 25, 345–352.

    Google Scholar 

  • Champagne, F. H., Sleicher, C. A., and Wehrmann, O. H.: 1967, ‘Turbulence Measurements with Inclined Hot-Wires’, J. Fluid Mech. 28, 153–176.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Deardorff, J. W., and Willis, G. E.: 1982, ‘Investigation of the Frozen-Turbulence Hypothesis for Temperature Spectra in a Convectively Mixed Layer’, Phys. Fluids 25, 21–28.

    Google Scholar 

  • Deardorff, J. W. and Willis, G. E.: 1984, ‘Groundlevel Concentration Fluctuations from a Buoyant and a Non-Buoyant Source within a Laboratory Convectively Mixed Layer’, Atmos. Envir. 18, 1297–1309.

    Google Scholar 

  • Deardorff, J. W. and Yoon, S.-C.: 1984, ‘On the Use of an Annulus to Study Mixed-Layer Entrainment’, J. Fluid Mech. 141.

  • Deardorff, J. W., Willis, G. E., and Lilly, D. K.: 1969, ‘Laboratory Investigation of Non-Steady Penetrative Convection’, J. Fluid Mech. 35, 7–31.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E., and Stockton, B. H.: 1980, ‘Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer’, J. Fluid Mech. 100, 41–64.

    Google Scholar 

  • Dickey, T. D. and Mellor, G. L.: 1980, ‘Decaying Turbulence in Neutral and Stratified Fluids’, J. Fluid Mech. 99, 13–31.

    Google Scholar 

  • Druilhet, A. and Durand, P.: 1984, ‘Etude de la Couche Limite Convective Sahelienne en Presence de Brumes Seches (Experience ECLATS)’, Boundary-Layer Meteorol. 28, 51–78.

    Google Scholar 

  • Ferreira, R. T. de S.: 1978, ‘Unsteady Turbulent Thermal Convection’, Ph.D. Thesis, Dept. of Mech. Egn., University of Illinois, Urbana, Ill, 225 pp.

    Google Scholar 

  • Grant, H. L., Hughes, B. A., Vogel, W. M., and Moilliet, A.: 1968, ‘The Spectrum of Temperature Fluctuations in Turbulent Flow’, J. Fluid Mech. 34, 423–442.

    Google Scholar 

  • Grossman, R. L.: 1982, ‘An Analysis of Vertical Velocity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer’, Boundary-Layer Meteorol. 23, 323–357.

    Google Scholar 

  • Guillemet, B. G., Isaka, H., and Mascart, P.: 1983, ‘Molecular Dissipation of Turbulent Fluctuations in the Convective Mixed Layer, Part 1: Height Variations of Dissipation Rates’, Boundary-Layer Meteorol. 27, 141–162.

    Google Scholar 

  • Hassid, S. and Galperin, B.: 1983, ‘A Turbulent Energy Model for Geophysical Flows’, Boundary-Layer Meteorol. 26, 397–412.

    Google Scholar 

  • Ivanov, V. N.: 1970, ‘The Use of the Tall IEM Meteorological Tower for the Study of the Boundary Layer of the Atmosphere’, Gidrometzdat Moscow, 143 pp. (in Russian).

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2151–2169.

    Google Scholar 

  • Lamb, R. G.: 1982, ‘Diffusion in the Convective Boundary Layer’, in Atmospheric Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 159–229.

  • Lenschow, D. H.: 1970, ‘Airplane Measurements of Planetary Boundary Layer Structure’, J. Appl. Meteorol. 9, 874–884.

    Google Scholar 

  • Lenschow, D. H., Wyngaard, J. C., and Pennell, W. T.: 1980, ‘Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer’, J. Atmos. Sci. 37, 1313–1326.

    Google Scholar 

  • Mahrt, L., and Paumier, J.: 1984, ‘Heat Transport in the Atmospheric Boundary Layer’, J. Atmos. Sci. 41, 3061–3075.

    Google Scholar 

  • Smedman, A.-S. and Högstrom, U.: 1983, ‘Turbulent Characteristics of a Shallow Convective Internal Boundary Layer’, Boundary-Layer Meteorol. 25, 271–287.

    Google Scholar 

  • Taylor, G. I.: 1935, ‘Statistical Theory of Turbulence. Part II’, Proc. Roy. Soc. A151, 444–454.

    Google Scholar 

  • Townsend, A. A.: 1964, ‘Natural Convection in Water over an Ice Surface’, Quart. J. Roy. Meteorol. Soc. 90, 248–259.

    Google Scholar 

  • Turner, J. S.: 1973, ‘Buoyancy Effects in Fluids’, Cambridge University Press, 367 pp.

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Willis, G. E., and Deardorff, J. W.: 1976, ‘A Laboratory Model of Diffusion into the Convective Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 102, 427–445.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1981, ‘A Laboratory Study of Dispersion from a Source in the Middle of the Convectively Mixed Layer’, Atmos. Envir. 15, 109–117.

    Google Scholar 

  • Wyngaard, J. C. and LeMone, M. A.: 1980, ‘Behavior of the Refractive Index Structure Parameter in the Entraining Convective Boundary Layer’, J. Atmos. Sci. 37, 1574–1585.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, ‘Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux’, J. Atmos. Sci. 28, 1171–1182.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos. Sci. 34, 111–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deardorff, J.W., Willis, G.E. Further results from a laboratory model of the convective planetary boundary layer. Boundary-Layer Meteorol 32, 205–236 (1985). https://doi.org/10.1007/BF00121880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121880

Keywords

Navigation