Skip to main content

Advertisement

Log in

Parameterization of the Interaction between the Atmosphere and the Urban Surface: Current State and Prospects

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Cities have a significant impact on the environment, forming microclimatic features such as urban heat island, an increase in the intensity of convective weather events, etc. Numerical models of the atmosphere with an integrated block that describes the interaction between the urbanized surface and the atmosphere—urban parameterization—are good at reproducing the meteorological features of the urban environment. Reviews of urban parameterizations are mostly outdated, and recent ones do not fully cover aspects of the methods used in the models to describe physical processes. This paper is dedicated to updating information on urban parameterizations, comparing the approaches used in them to describe physical processes, and forming proposals for their improvement. Based on the most common urban parameterizations of various levels of complexity, the main groups of physical processes describing “urban surface-atmosphere” interaction are identified. They are the surface energy balance, radiation heat transfer, surface moisture balance, turbulent heat and moisture exchange in the urban canopy, anthropogenic influence on heat and moisture fluxes, radiation, and turbulent interaction with urban vegetation. The main approaches to the parameterization of physical processes are defined within each block. Modern trends in the development of urban parameterizations are highlighted: (1) over the past 10 years, parameterizations have become more complicated due to the addition of the building energy model, a three-dimensional structure of urban vegetation, and vertical resolution when calculating turbulent fluxes; (2) at the same time, not much attention is paid to revising the original empirical formulas, often obtained on the basis of single field or laboratory experiments. Ways to improve urban parameterizations are proposed by clarifying the basic dependencies used mainly in the calculation of turbulent fluxes, particularly using the results of highly detailed large-eddy simulation modeling, which, with growing computational power, is increasingly used to simulate explicit heat transfer between the atmosphere and individual elements of the urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. I. Varentsov, T. E. Samsonov, A. V. Kislov, and P. I. Konstantinov, “Reproduction of the heat island of the Moscow agglomeration with the COSMO-CLM regional climate model,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6, 25–37 (2017).

  2. G. S. Rivin, R. M. Vil’fand, D. B. Kiktev, I. A. Rozinkina, K. O. Tudrii, D. V. Blinov, M. I. Varentsov, T. E. Samsonov, A. Yu. Bundel’, A. A. Kirsanov, and D. I. Zakharchenko, “The system for numerical prediction of weather events (including severe ones) for Moscow megacity: The prototype development,” Russ. Meteorol. Hydrol. 44 (11), 729–738 (2019).

    Article  Google Scholar 

  3. A. J. Arnfield and C. S. B. Grimmond, “An urban canyon energy budget model and its application to urban storage heat flux modelling,” Energ. Buildings 27, 61–68 (1998).

    Article  Google Scholar 

  4. S. P. Arya, Introduction to Micrometeorology (Academic Press, New York, 1988).

    Google Scholar 

  5. S. I. Bohnenstengel, S. Evans, P. A. Clark, and S. E. Belcher, “Simulations of the urban heat island,” Q. J. R. Meteorol. Soc., London 137, 1625–1640 (2011).

  6. S. I. Bohnenstengel, I. Hamilton, M. Davies, and S. E. Belcher, “Impact of anthropogenic heat emissions on London’s temperatures,” Q. J. R. Meteorol. Soc., London 140, 687–698 (2014).

  7. S. I. Bohnenstengel and M. A. Hendry, Report on implementation and evaluation of MORUSES in the UKV (PS37), Met Office, Key Deliverable Report (2016).

  8. R. Bornstein and Q. Lin, “Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies,” Atmos. Environ. 34 (3), 507–516 (2000). https://doi.org/10.1016/S1352-2310(99)00374-X

    Article  Google Scholar 

  9. B. Bueno, G. Pigeon, L. K. Norford, K. Zibouche, and C. Marchadier, “Development and evaluation of a building energy model integrated in the TEB scheme,” Geosci. Model Dev. 5 (2), 433–448 (2012).

    Article  Google Scholar 

  10. F. Chen, H. Kusaka, R. Bornstein, J. Ching, C. S. B. Grimmond, S. Grossman-Clarke, T. Loridan, K. W. Manning, A. Martilli, S. Miao, D. Sailor, F. Salamanca, H. Taha, M. Tewari, X. Wang, et al., “The integrated WRF/Urban modelling system: Development, evaluation, and applications to urban environmental problems,” Int. J. Climatol. 31, 273–288 (2011).

    Article  Google Scholar 

  11. J. A. Clarke, Energy Simulation in Building Design (Adam Hilger, Bristol, 1985).

    Google Scholar 

  12. D. de la Paz, R. Borge, and A. Martilli, “Assessment of a high resolution annual WRF-BEP/CMAQ simulation for the urban area of Madrid (Spain),” Atmos. Environ. 144, 282–296 (2016).

    Article  Google Scholar 

  13. C. Feigenwinter, R. Vogt, and E. Parlow, “Vertical structure of selected turbulence characteristics above an urban canopy,” Theor. Appl. Climatol. 62, 51–63 (1999).

    Article  Google Scholar 

  14. M. G. Flanner, “Integrating anthropogenic heat flux with global climate models,” Geophys. Res. Lett. 36, L02801 (2009). https://doi.org/10.1029/2008GL036465

    Article  Google Scholar 

  15. K. Fortuniak, “Application of a slab surface energy balance model to determine surface parameters for urban areas,” Lund Electron. Rep. Phys. Geog. 5, 90–91 (2005).

    Google Scholar 

  16. V. Garbero, M. Milelli, E. Bucchignani, P. Mercogliano, M. Varentsov, I. Rozinkina, G. Rivin, D. Blinov, H. Wouters, J.-P. Schulz, U. Schattler, F. Bassani, M. Demuzere, F. Repola, “Evaluating the urban canopy scheme TERRA_URB in the COSMO model for selected European cities,” Atmosphere 12 (2), 237 (2021).

    Article  Google Scholar 

  17. G. Garuma, “Review of urban surface parameterizations for numerical climate models,” Urban Clim. 24, 830–851 (2018).

    Article  Google Scholar 

  18. A. Glazunov, “Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles,” Izv., Atmos. Ocean. Phys. 50 (4), 356–368 (2014a). https://doi.org/10.1134/S0001433814040148

    Article  Google Scholar 

  19. A. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv., Atmos. Ocean. Phys. 50 (3), 236–245 (2014b). https://doi.org/10.1134/S0001433814030037

    Article  Google Scholar 

  20. A. Glazunov, A. Debolskiy, and E. Mortikov, “Turbulent length scale for multilayer RANS model of urban canopy and its evaluation based on large-eddy simulations,” Supercomput. Front. Innovation 8 (4), 100–116 (2021).

    Google Scholar 

  21. C. S. B. Grimmond and T. Oke, “An evapotranspiration–interception model for urban areas,” Water Resour. Res. 27, 1739–1755 (1991).

    Article  Google Scholar 

  22. C. S. B. Grimmond, M. Blackett, M. Best, J. Barlow, J.‑J. Baik, S. Belcher, S. I. Bohnenstengel, I. Calmet, F. Chen, A. Dandou, K. Fortuniak, M. L. Gouvea, R. Hamdi, M. Hendry, H. Kondo, et al., “The international urban energy balance models comparison project: First results from Phase 1,” J. Appl. Meteorol. Climatol. 49, 1268–1292 (2010).

    Article  Google Scholar 

  23. C. S. B. Grimmond, M. Blackett, M. Best, J. Barlow, J.‑J. Baik, S. Belcher, S. I. Bohnenstengel, I. Calmet, F. Chen, A. Dandou, K. Fortuniak, M. L. Gouvea, R. Hamdi, M. Hendry, H. Kondo, et al., “The international urban energy balance models comparison project: Initial results from Phase 2,” Int. J. Climatol. 31 (2), 244–272 (2011).

    Article  Google Scholar 

  24. R. Hamdi and V. Masson, “Inclusion of a drag approach in the town energy balance (TEB) scheme: Offline 1-D validation in a street canyon,” J. Appl. Meteorol. Climatol. 47, 2627–2644 (2008).

    Article  Google Scholar 

  25. R. Hamdi, D. Degrauwe, and P. Termonia, “Coupling the town energy balance (TEB) scheme to an operational limited-area NWP Model: Evaluation for a highly urbanized area in Belgium,” Weather Forecast. 27 (2), 323–344 (2012).

    Article  Google Scholar 

  26. J. Y. Han, J.-J. Baik, and H. Lee, “Urban impacts on precipitation,” Asia-Pac. J. Atmos. Sci. 50 (1), 17–30 (2014). https://doi.org/10.1007/s13143-014-0016-7

    Article  Google Scholar 

  27. I. Harman, M. Best, and S. Belcher, “Radiative exchange in an urban street canyon,” Boundary-Layer Meteorol. 110, 301–316 (2004a).

    Article  Google Scholar 

  28. I. Harman, M. Best, and S. Belcher, “Scalar fluxes from urban street canyons. Part II: Model,” Boundary-Layer Meteorol. 113, 387–410 (2004b).

    Article  Google Scholar 

  29. I. Harman and J. Finnigan, “A simple unified theory for flow in the canopy and roughness sublayer,” Boundary-Layer Meteorol. 123, 339–363 (2007).

    Article  Google Scholar 

  30. D. Hertwig, S. Grimmond, M. A. Hendry, B. Saunders, Z. Wang, M. Jeoffrion, P. Vidale, P. McGuire, S. Bohnenstengel, H. Ward, and S. Kotthaus, “Urban signals in high-resolution weather and climate simulations: Role of urban land-surface characterization,” Theor. Appl. Climatol. 142, 701–728 (2020).

    Article  Google Scholar 

  31. L. Jin, S. Schubert, D. Fenner, F. Meier, and C. Schneider, “Integration of a building energy model in an urban climate model and its application,” Boundary-Layer Meteorol. 178, 249–281 (2021).

    Article  Google Scholar 

  32. W. Jürges, Der Wärmeübergang an einer ebenen Wand (R. Oldenbourg, 1924).

    Google Scholar 

  33. M. Kanda, M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, “Roughness lengths for momentum and heat derived from outdoor urban scale models,” J. Appl. Meteorol. Climatol. 46 (7), 1067–1079 (2007).

    Article  Google Scholar 

  34. M. Kanda, A. Inagaki, T. Miyamoto, M. Gryschka, and S. Raasch, “A new aerodynamic parametrization for real urban surfaces,” Boundary-Layer Meteorol 148 (2), 357–377 (2013).

    Article  Google Scholar 

  35. E. Krayenhoff, A. Christen, A. Martilli, and T. Oke, “A multi-layer radiation model for urban neighbourhoods with trees,” Boundary- Layer Meteorol. 151, 139–178 (2014). https://doi.org/10.1007/s10546-013-9883-1

    Article  Google Scholar 

  36. E. Krayenhoff, J.-L. Santiago, A. Martilli, A. Christen, and T. Oke, “Parametrization of drag and turbulence for urban neighborhoods with trees,” Boundary-Layer Meteorol. 156, 157–189 (2015). https://doi.org/10.1007/s10546-015-0028-6

    Article  Google Scholar 

  37. E. S. Krayenhoff, T. Jiang, A. Christen, A. Martilli, T. R. Oke, B. N. Bailey, N. Nazarian, J. A. Voogt, M. G. Giometto, A. Stastny, and B. R. Crawford, “A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate,” Urban Clim. 32, 100590 (2020). https://doi.org/10.1016/j.uclim.2020.100590

    Article  Google Scholar 

  38. H. Kusaka, H. Kondo, Y. Kikegawa, and F. Kimura, “A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models,” Boundary Layer Meteorol. 101 (3), 329–358 (2001).

    Article  Google Scholar 

  39. H. Kusaka and F. Kimura, “Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case,” J. Meteorol. Soc. Jpn. 82 (1), 67–80 (2004).

    Article  Google Scholar 

  40. H. Kusaka, F. Chen, M. Tewari, J. Dudhia, D. O. Gill, M. G. Duda, W. Wang, and Y. Miya, “Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model,” J. Meteorol. Soc. Jpn. Ser. II 90B, 33–45 (2012).

    Article  Google Scholar 

  41. C. Lac, J.-P. Chaboureau, V. Masson, J.-P. Pinty, P. Tulet, J. Escobar, M. Leriche, C. Barthe, B. Aouizerats, C. Augros, P. Aumond, A. Franck, P. Bechtold, S. Berthet, S. Bielli, et al., “Overview of the Meso-NH model version 5.4 and its applications,” Geosci. Model Dev. 11, 1929–1969 (2018). https://doi.org/10.5194/gmd-11-1929-2018

    Article  Google Scholar 

  42. A. Lemonsu, C. S. B. Grimmond, and V. Masson, “Modeling the surface energy balance of the core of an old Mediterranean city: Marseille,” J. Appl. Meteorol. 43, 312–327 (2004).

    Article  Google Scholar 

  43. A. Lemonsu, V. Masson, L. Shashua-Bar, E. Erell, and D. Pearlmutter, “Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas,” Geosci. Model Dev. 5, 1377–1393 (2012).

    Article  Google Scholar 

  44. Q. Li, E. Bou-Zeid, S. Grimmond, S. Zilitinkevich, and G. Katul, “Revisiting the relation between momentum and scalar roughness lengths of urban surfaces,” Q. J. R. Meteorol. Soc. 146, 3144–3164 (2020). https://doi.org/10.1002/qj.3839

    Article  Google Scholar 

  45. J. Liu and D. Niyogi, “Meta-analysis of urbanization impact on rainfall modification,” Sci. Rep. 9 (1), 7301 (2019). https://doi.org/10.1038/s41598-019-42494-2

    Article  Google Scholar 

  46. J. F. Louis, “A parametric model of vertical eddies fluxes in the atmosphere,” Boundary-Layer Meteorol. 17, 187–202 (1979).

    Article  Google Scholar 

  47. A. Martilli, A. Clappier, and M. W. Rotach, “An urban surface exchange parameterisation for mesoscale models,” Boundary-Layer Meteorol. 104, 261–304 (2002).

    Article  Google Scholar 

  48. V. Masson, “A physically-based scheme for the urban energy budget in atmospheric models,” Boundary-Layer Meteorol. 94, 357–397 (2000).

    Article  Google Scholar 

  49. V. Masson, C. S. B. Grimmond, and T. R. Oke, “Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities,” J. Appl. Meteorol. 41, 1011–1026 (2002).

    Article  Google Scholar 

  50. V. Masson, “Urban surface modeling and the meso-scale impact of cities,” Theor. Appl. Climatol. 84, 35–45 (2006).

    Article  Google Scholar 

  51. V. Masson and Y. Seity, “Including atmospheric layers in vegetation and urban offline surface schemes,” J. Appl. Meteorol. Climatol. 48 (7), 1377–1397 (2009).

    Article  Google Scholar 

  52. V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, et al., The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes," Geosci. Model Dev. 6, 929–960 (2013). https://doi.org/10.5194/gmd-6-929-2013

    Article  Google Scholar 

  53. S. G. Miao and F. Chen, “Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model,” Sci. China-Earth Sci. 57, 2408–2416 (2014).

    Article  Google Scholar 

  54. G. Mussetti, D. Brunner, J. Allegrini, A. Wicki, S. Schubert, and J. Carmeliet, “Simulating urban climate at sub-kilometre scale for representing the intra-urban variability of Zurich, Switzerland,” Int. J. Climatol. 40, 458–476 (2020). https://doi.org/10.1002/joc.6221

    Article  Google Scholar 

  55. G. Mussetti, D. Brunner, S. Henne, J. Allegrini, E. Krayenhoff, S. Schubert, C. Feigenwinter, R. Vogt, A. Wicki, and J. Carmeliet, “COSMO-BEP-Tree V1.0: A coupled urban climate model with explicit representation of street trees,” Geosci. Model Dev. 13 (3), 1685–1710 (2020).

    Article  Google Scholar 

  56. N. Nazarian, E. S. Krayenhoff, and A. Martilli, “A one-dimensional model of turbulent flow through "urban” canopies (MLUCM V2.0): Updates based on large-eddy simulation," Geosci. Model Dev. 13 (3), 937–953 (2020). https://doi.org/10.5194/gmd-13-937-2020

    Article  Google Scholar 

  57. M. Nunez and T. R. Oke, “The energy balance of an urban canyon,” J. Appl. Meteorol. 16, 11–19 (1977).

    Article  Google Scholar 

  58. T. R. Oke, Boundary Layer Climates (Routledge, New York, 1987).

    Google Scholar 

  59. T. Oke, G. Mills, A. Christen, and J. Voogt, Urban Climates (Cambridge University Press, Cambridge, 2017). https://doi.org/10.1017/9781139016476.

  60. A. Porson, P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, “Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations,” Q. J. R. Meteorol. Soc. 136 (651), 1514–1529 (2010).

    Article  Google Scholar 

  61. M. R. Raupach, R. A. Antonia, and S. Rajagoplan, “Rough-wall turbulent boundary layers,” Appl. Mech. Rev. 44, 1–25 (1991).

    Article  Google Scholar 

  62. E. Redon, A. Lemonsu, V. Masson, B. Morille, and M. Musy, “Implementation of street trees in solar radiative exchange parameterization of TEB in SURFEX V8.0,” Geosci. Model Dev. 10, 385–411 (2017). https://doi.org/10.5194/gmd-10-385-2017

    Article  Google Scholar 

  63. E. Redon, A. Lemonsu, and V. Masson, “An urban trees parameterization for modeling microclimatic variables and thermal comfort conditions at street level with the Town Energy Balance Model (TEB-SURFEX V8.0),” Geosci. Model Dev. 13, 385–399 (2020). https://doi.org/10.5194/gmd-13-385-2020

    Article  Google Scholar 

  64. I. Ribeiro, A. Martilli, M. Falls, A. Zonato, and G. Villalba, “Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ,” Atmos. Res. 248, 105220 (2021). https://doi.org/10.1016/j.atmosres.2020.105220

    Article  Google Scholar 

  65. G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, D. B. Kiktev, K. O. Tudrii, D. V. Blinov, M. I. Varentsov, D. I. Zakharchenko, T. E. Samsonov, I. A. Repina, and A. Yu. Artamonov, “Development of the high-resolution operational system for numerical prediction of weather and severe weather events for the Moscow Region,” Russ. Meteorol. Hydrol. 45 (7), 455–465 (2020).

    Article  Google Scholar 

  66. A. M. Rizwan, L. Y. C. Dennis, and C. Liu, “A review on the generation, determination and mitigation of urban heat island,” J. Environ. Sci. 20 (1), 120–128 (2008). https://doi.org/10.1016/S1001-0742(08)60019-4

    Article  Google Scholar 

  67. M. W. Rotach, “Profiles of turbulence statistics in and above an urban street canyon,” Atmos. Environ. 29, 1473–1486 (1995).

    Article  Google Scholar 

  68. F. B. Rowley, A. B. Algren, and J. L. Blackshaw, “Surface conductances as affected by air velocity, temperature and character of surface,” ASHRAE Trans. 36, 429–446 (1930).

    Google Scholar 

  69. F. B. Rowley and W. A. Eckley, “Surface Coefficients As Affected by Wind Direction,” ASHRAE Trans 38, 33–46 (1932).

    Google Scholar 

  70. M. Rummukainen, “Added value in regional climate modeling,” Wiley Interdiscip. Rev. Clim. Change 7 (1), 145–159 (2016).

    Article  Google Scholar 

  71. F. Salamanca, A. Krpo, A. Martilli, and C. Alain, “A new Building Energy Model coupled with an urban canopy parameterization for urban climate simulations. Part I. Formulation, verification, and sensitivity analysis of the model,” Theor. Appl. Climatol. 99, 331–344 (2010).

    Article  Google Scholar 

  72. F. Salamanca, A. Martilli, and C. Yagüe, “A numerical study of the urban heat island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies,” Int. J. Climatol. 32, 2372–2386 (2012). https://doi.org/10.1002/joc.3398

    Article  Google Scholar 

  73. J. Santiago and A. Martilli, “A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds-averaged Navier–Stokes microscale simulations,” Boundary-Layer Meteorol. 137, 417–439 (2010).

    Article  Google Scholar 

  74. A. Sarkar and K. De Ridder, The urban heat island intensity of Paris: A case study based on a simple urban surface parametrization, Boundary-Layer Meteorol. 138, 511–520 (2010).

    Article  Google Scholar 

  75. R. Schoetter, Y. Kwok, C. de Munck, K. Lau, W. Wong, and V. Masson, “Multi-layer coupling between SURFEX-TEB-V9.0 and Meso-NH-V5.3 for modelling the urban climate of high-rise cities,” Geosci. Model Dev. 13 (11), 5609–5643 (2020).

    Article  Google Scholar 

  76. S. Schubert, S. Grossman-Clarke, and A. Martilli, “A double-canyon radiation scheme for multi-layer urban canopy models,” Boundary-Layer Meteorol. 145 (3), 439–468 (2012).

    Article  Google Scholar 

  77. S. Schubert and S. Grossman-Clarke, “Evaluation of the coupled COSMO-CLM/DCEP model with observations from BUBBLE,” Q. J. R. Meteorol. Soc. 140 (685), 2465–2483 (2014).

    Article  Google Scholar 

  78. A. Simón-Moral, A. Dipankar, M. Roth, C. Sánchez, E. Velasco, and X.-Y. Huang, “Application of MORUSES single-layer urban canopy model in a tropical city: Results from Singapore,” Q. J. R. Meteorol. Soc. 146, 576–597 (2020). https://doi.org/10.1002/qj.3694

    Article  Google Scholar 

  79. J. O. Smith, PhD Thesis (Univ. Bath, Department Mech. Eng., 2010).

  80. H. Swaid, “The role of radiative-convective interaction in creating the microclimate of urban street canyons,” Boundary-Layer Meteorol. 64, 231–259 (1993).

    Article  Google Scholar 

  81. K. Trusilova, B. Früh, S. Brienen, A. Walter, V. Masson, G. Pigeon, and P. Becker, “Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM,” J. Appl. Meteorol. Climatol. 52 (10), 2296–2311 (2013).

    Article  Google Scholar 

  82. World Urbanization Prospects 2018 (United Nations Press, New York, 2019). https://esa.un.org/unpd/wup/.

  83. M. Varentsov, H. Wouters, V. Platonov, and P. Konstantinov, “Megacity-induced mesoclimatic effects in the lower atmosphere: A modeling study for multiple summers over Russia,” Atmosphere 9 (2), 50 (2018). https://doi.org/10.3390/atmos9020050

    Article  Google Scholar 

  84. M. I. Varentsov, M. Y. Grishchenko, and H. Wouters, “Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling,” Geogr. Environ. Sustainability 12 (4), 74–95 (2019).

    Article  Google Scholar 

  85. M. Varentsov, T. Samsonov, and M. Demuzere, “Impact of urban canopy parameters on a megacity’s modelled thermal environment,” Atmosphere 11 (12), 1349 (2020). https://doi.org/10.3390/atmos11121349

    Article  Google Scholar 

  86. V. Vasenev, M. Varentsov, P. Konstantinov, O. Romzaykina, I. Kanareykina, Y. Dvornikov, and V. Manukyan, “Projecting urban heat island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis,” Sci. Total Environ. 786, 147457 (2021).

    Article  Google Scholar 

  87. Z. Wang, Z. Xiao, C.-Y. Tam, W. Pan, J. Chen, H. Chenxi, C. Ren, W. Wei, and S. Yang, “The projected effects of urbanization and climate change on summer thermal environment in Guangdong–Hong Kong–Macao greater bay area of China,” Urban Clim. 37, 100866 (2021). https://doi.org/10.1016/j.uclim.2021.100866

    Article  Google Scholar 

  88. K. V. Wong, A. Paddon, and A. Jimenez, “Review of world urban heat islands: Many linked to increased mortality,” J. Energy Resour. Technol. 135 (2), 1–12 (2013). https://doi.org/10.1115/1.4023176

    Article  Google Scholar 

  89. H. Wouters, M. Demuzere, K. De Ridder, and N. P. van Lipzig, “The impact of impervious water-storage parametrization on urban climate modeling,” Urban Clim. 11, 24–50 (2015).

    Article  Google Scholar 

  90. H. Wouters, M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, J. Camps, D. Tielemans, and N. P. van Lipzig, “The efficient urban canopy dependency parametrization (SURY) V1.0 for atmospheric modeling: description and application with the COSMO-CLM model for a Belgian summer,” Geosci. Model Dev. 9 (9), 3027–3054 (2016).

    Article  Google Scholar 

  91. Z. Xie and I. P. Castro, “LES and RANS for turbulent flow over arrays of wall-mounted obstacles,” Flow, Turbul. Combust. 76 (3), 291–312 (2006). https://doi.org/10.1007/s10494-006-9018-6

    Article  Google Scholar 

  92. J. Yang, Z. H. Wang, F. Chen, S. Miao, M. Tewari, J. Voogt, and S. Myint, “Enhancing hydrologic modelling in the coupled weather research and forecasting-urban modelling system,” Boundary-Layer Meteorol. 155, 87–109 (2015). https://doi.org/10.1007/s10546-014-9991-6

    Article  Google Scholar 

  93. S. Zemtsov, N. Shartova, M. Varentsov, P. Konstantinov, V. Kidyaeva, A. Shchur, S. Timonin, and M. Grischchenko, Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow (2010–2017), Health Place 66 (9), 102429 (2020). https://doi.org/10.1016/j.healthplace.2020.102429

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Scientific and Technical activities of Roshydromet, Reg. no. AAAAAA-A20-120021490079-3, and within the framework of the project of the scientific and educational interdisciplinary school of Moscow State University “Brain, cognitive systems, artificial intelligence”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Tarasova, M. I. Varentsov or V. M. Stepanenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, M.A., Varentsov, M.I. & Stepanenko, V.M. Parameterization of the Interaction between the Atmosphere and the Urban Surface: Current State and Prospects. Izv. Atmos. Ocean. Phys. 59, 111–130 (2023). https://doi.org/10.1134/S0001433823020068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823020068

Keywords:

Navigation