Skip to main content
Log in

An Algorithm for Adaptive Assessment in Time Series Seasonal Oscillations and Its Testing Based on the Example of Variations in the CO2 Concentration in the Atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An adaptive model is proposed to describe time-varying seasonal effects. The seasonal average function is constructed using an iterative algorithm that provides a neat decomposition of the signal into a generalized trend, seasonal and residual components. By a trend, we mean long-term evolutionary changes in the average signal level, both unidirectional and chaotic, in the form of a slow random drift. This algorithm allows one to obtain unbiased estimates for each of the signal components, even in the presence of a significant number of missing observations. The series length is not required to be a multiple of an integer number of years. In contrast to the usual “Climate Normals” (CN) model, the considered adaptive model of seasonal effects assumes a continuous slow change in the properties of the seasonal component over time. The degree of allowable variability in seasonal effects from year to year is entered as a tunable parameter of the model. In particular, this allows one to show the dynamics of the growth of the amplitude of seasonal fluctuations in time in the form of a continuous (smooth) function without necessarily linking these changes to predetermined calendar epochs. The algorithm was tested on the atmospheric CO2 concentration monitoring series at Barrow, Mauna Loa, Tutuila, and South Pole stations located at different latitudes. The form of the seasonal variation was estimated, and the average amplitude of the seasonal variation and the rate of its change at each station were calculated. Noticeable differences in the dynamics of the studied parameters between stations are demonstrated. Mean amplitude of seasonal variation in CO2 concentration at Barrow, Mauna Loa, Tutuila, and South Pole stations in the epoch 2010–2019 was estimated as 18.15, 7.08, 1.30, and 1.26 ppm, respectively, and the average rate of increase in the amplitude of the seasonal variation in the increase in CO2 concentration in the interval 1976–2019 is 0.085, 0.0100, 0.0165, and 0.0031 ppm/year. In relative terms, the increase is 0.57 ± 0.03, 0.11 ± 0.02, 2.24 ± 0.24, and 0.27 ± 0.04% per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Anderson, T., The Statistical Analysis of Time Series, New York: John Wiley and Sons, 1971; Moscow: Mir, 1976.

  2. Beckman, I.N., Khaskov, M.A., Paseka, V.I., Panarkina, L.E., and Ryazantsev, G.B., Radiation variations in the northern part of the Azov Sea, Vestn. Mosk. Univ., Ser. 2: Khim., 2003, vol. 44, no. 2, pp. 140–148.

    Google Scholar 

  3. Brendstrup, B., Hylleberg, S., Nielsen, M., Skipper, L., and Stentoft, L., Seasonality in economic models, Macroecon. Dyn., 2004, vol. 8, no. 3, pp. 362–394. https://doi.org/10.1017/S1365100504030111

    Article  Google Scholar 

  4. Bronson, F.H., Climate change and seasonal reproduction in mammals, Philos. Trans. R. Soc. London, Ser. B., 2009, vol. 364, no. 1534, pp. 3331–3340. https://doi.org/10.1098/rstb.2009.0140

    Article  Google Scholar 

  5. Buys Ballot, C.H.D., Les changements périodiques de température, dépendats de la nature du Soleil et de la Lune, mis en rapport avec le pronostic du temps, déduits d’observations Néerlandaises de 1729 à 1846, Utrecht: Kemink, 1847.

    Google Scholar 

  6. Carbon and Other Biogeochemical Cycles in Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge Univ. Press, 2014, pp. 465–570. https://doi.org/10.1017/CBO9781107415324.015

  7. Dagum, E.B. and Bianconcini, S., Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation, Switzerland: Springer, 2016.

    Book  Google Scholar 

  8. Das, T., Pierce, D.W., Cayan, D.R., Vano, J.A., and Lettenmaier, D.P., The importance of warm season warming to Western U.S. streamflow changes, Geophys. Res. Lett., 2011, vol. 38, no. 23. https://doi.org/10.1029/2011GL049660

  9. Deshcherevskii, A.V., Filtration of the seasonal components of the variations in geoelectric parameters in the Garm polygon, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Moscow: Inst. Dyn. Geos., Russ. Acad. Sci., 1996.

  10. Deshcherevskii, A.V. and Lukk, A.A., Identification of regular components in time variations of geophysical parameters by the method of decomposition into nonharmonic components, Vulkanol. Seismol., 2002, no. 5, pp. 65–78.

  11. Deshcherevskii, A.V. and Sidorin, A.Ya., Additivnaya i mul’tiplikativnaya modeli sezonnykh variatsii geofizicheskikh polei (Additive and Multiplicative Models of Seasonal Variations in the Geophysical Fields), Moscow: OIFZ RAN, 1998.

  12. Deshcherevskii, A.V. and Sidorin, A.Ya., Nekotorye voprosy metodiki otsenki srednesezonnykh funktsii dlya geofizicheskikh dannykh (Some Problems of the Method for Estimating the Average Seasonal Functions for Geophysical Data), Moscow: OIFZ RAN, 1999.

  13. Deshcherevskii, A.V. and Sidorin, A.Ya., Two models of seasonal variations in geophysical fields, Izv., Phys. Solid Earth, 2000, vol. 36, no. 6, pp. 449–459.

    Google Scholar 

  14. Deshcherevskii, A.V. and Sidorin, A.Ya., A two component model of geophysical processes: Seasonal variations and flicker noise, Dokl. Earth Sci., 2001, vol. 376, no. 1, pp. 65–70.

    Google Scholar 

  15. Deshcherevskii, A.V. and Sidorin, A.Ya., A flicker-noise problem in the study of cause-and-effect relationships between natural processes, Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 1030–1034.

    Google Scholar 

  16. Deshcherevskii, A.V. and Sidorin, A.Ya., Periodograms of superimposed epochs in search for hidden rhythms in experimental data time series, Seism. Instrum., 2012a, vol. 48, no. 1, pp. 57–74. https://doi.org/10.3103/S0747923912010033

    Article  Google Scholar 

  17. Deshcherevskii, A.V. and Sidorin, A.Ya., Comparison of periodograms of superimposed epochs and Fourier spectra of experimental series, Seism. Instrum, 2012b, vol. 48, no. 3, pp. 235–255. https://doi.org/10.3103/S0747923912030048

    Article  Google Scholar 

  18. Deshcherevskii, A.V. and Sidorin, A.Ya., Analysis of diurnal periodicity in the Dushanbe–Vakhsh catalog of earthquakes using the Rayleigh–Schuster’s hodograph method, Vopr. Inzh. Seismol., 2015, vol. 42, no. 3, pp. 71–92.

    Google Scholar 

  19. Deshcherevskii, A.V. and Sidorin, A.Ya., Iterative algorithm for time series decomposition into trend and seasonality: Testing using the example of CO2 concentrations in the atmosphere, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 8, pp. 813–836. https://doi.org/10.1134/S0001433821080028

    Article  Google Scholar 

  20. Deshcherevskii, A.V. and Zhuravlev, V.I., Testirovanie metodiki otsenki parametrov flikker-shuma (Testing a Technique for the Estimation of Flicker-Noise Parameters), Moscow: OIFZ RAN, 1996.

  21. Deshcherevskii, A.V. and Zhuravlev, V.I., Analiz vremennykh ryadov s programmoi ABD (Time Series Analysis with ABD Software), Moscow: OIFZ RAN, 1997.

  22. Deshcherevskii, A.V. and Zhuravlev, V.I., Statisticheskie svoistva i spektral’no-korrelyatsionnyi analiz aktivnosti mikrozemletryasenii na Garmskom poligone (Statistical Features and Spectral–Correlation Analysis of the Activity of Microearthquakes in the Garm Polygon), Moscow: OIFZ RAN, 2000.

  23. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Algorithm of seasonal variation filtering for geophysical time series, in Geofizicheskie protsessy v diskretnoi srede (Geophysical Processes in Discrete Media), Moscow: IFZ RAN, 1993, pp. 117–136.

  24. Deshcherevskii, A.V., Zhuravlev, V.I., A. A. Lukk, and A. Ya. Sidorin, Signs of the flicker-noise structure in temporal electrometric parameters, in Izuchenie prirody variatsii geofizicheskikh polei (Study of the Nature of Geophysical Field Variations), Moscow: OIFZ RAN, 1994, pp. 5–17.

  25. Deshcherevskii, A.V., Zhuravlev, V.I., and Sidorin, A.Ya., Spectral–temporal features of seasonal variations in apparent resistivity, Izv., Phys. Solid Earth, 1997a, vol. 33, no. 3, pp. 217–226.

    Google Scholar 

  26. Deshcherevskii, A.V., Lukk, A.A., and Sidorin, A.Ya., Flicker noise structure in the time realizations of geophysical fields, Izv., Phys. Solid Earth, 1997b, vol. 33, no. 7, pp. 515–529.

    Google Scholar 

  27. Deshcherevskii, A.V., Mukhin, V.M., and Sidorin, A.Y., Phase distinctions of seasonal variations in the soil moisture influx at stations of the Garm research area, Izv., Phys. Solid Earth, 2008, vol. 44, pp. 728–737. https://doi.org/10.1134/S1069351308090048

    Article  Google Scholar 

  28. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., ABD software: A Versatile tool for analysis of data from monitoring observations, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 35–48. https://doi.org/10.21455/std2016.4-6

    Article  Google Scholar 

  29. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, no. 1, pp. 46–59. https://doi.org/10.3103/S0747923917010030

    Article  Google Scholar 

  30. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD: A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, no. 3, pp. 203–223. https://doi.org/10.3103/S0747923917030021

    Article  Google Scholar 

  31. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Problems of analyzing the time series with missing fragments and their solutions by using the WinABD software, Izv., Atmos. Ocean. Phys., 2017c, vol. 53, no. 7, pp. 659–678. https://doi.org/10.1134/S0001433817070027

    Article  Google Scholar 

  32. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Analysis of rhythms in experimental signals, Izv., Atmos. Ocean. Phys., 2017d, vol. 53, no. 8, pp. 847–858. https://doi.org/10.1134/S0001433817080035

    Article  Google Scholar 

  33. Deshcherevskii, A.V., Idarmachev, Sh.G., and Marchenko, M.N., Assessment of the seasonal variations in apparent resistance of rocks on the dam in the Chirkey HPP with shears by the level and gaps in observational series, Tr. Inst. Geol. Dag. Nauchn. Tsentra Ross. Akad. Nauk, 2019, no. 3, pp. 52–62.

  34. Deshcherevskii, A.V., Sidorin, A.Ya., and Fattakhov, E.A., Comprehensive methodology for describing and filtering exogenic effects in monitoring data, taking into account the type of observations and experimental data defects, Seism. Instrum., 2020, vol. 56, no. 4, pp. 411–433. https://doi.org/10.3103/S0747923920040027

    Article  Google Scholar 

  35. Economic Time Series: Modeling and Seasonality, Bell, S.H., Holan, S.H., and McElroy, T.S., CRC/Chapman and Hall, 2012.

  36. Feng, X., Porporato, A., and Rodriguez-Iturbe, I., Changes in rainfall seasonality in the tropics, Nat. Clim. Change, 2013, vol. 3, no. 9, pp. 811–815. https://doi.org/10.1038/nclimate1907

    Article  Google Scholar 

  37. Forestell, B., Hewitt, M., and Mondoux, S., P101: Seasonal variations in modes of presentation in ST elevation myocardial infarction, Can. J. Emerg. Med., 2020, vol. 22, no. S1, p. S101. https://doi.org/10.1017/cem.2020.307

    Article  Google Scholar 

  38. Gavrilov, V.A., Deshcherevskii, A.V., Poltavtseva, E.V., and Sidorin, A.Ya., Technologies of preliminary data processing for multidisciplinary geophysical monitoring and a case study of their application in the Kamchatka geoacoustic observation system, Seism. Instrum., 2017, vol. 53, no. 4, pp. 296–308. https://doi.org/10.3103/S0747923917040053

    Article  Google Scholar 

  39. Gavrilov, V.A., Panteleev, I.A., Deshcherevskii, A.V., Lander, A.V., Buss, Yu.Yu., and Vlasov, Yu.A., Stress-strain state monitoring of the geological medium, based on the multi-instrumental measurements in the boreholes: Experience of research at the Petropavlovsk-Kamchatskii geodynamic testing site (Kamchatka, Russia), Pure Appl. Geophys., 2020, vol. 177, no. 1, pp. 397–419. https://doi.org/10.1007/s00024-019-02311-3

    Article  Google Scholar 

  40. Goswami, N., Taucher, A.A., Brix, B., Roessler, A., Koestenberger, M., Reibnegger, G., and Cvirn, G., Coagulation changes during Central Hypovolemia across seasons, J. Clin. Med., 2020, vol. 9, no. 11, p. 3461. https://doi.org/10.3390/jcm9113461

  41. Groisman, P.Ya., Blyakharchuk, T.A., Chernokulsky, A.V., Arzhanov, M.M., Marchesini, L.B., Bogdanova, E.G., Borzenkova, I.I., Bulygina, O.N., Karpenko, A.A., Karpenko, L.V., Knight, R.W., Khon, V.Ch., Korovin, G.N., Meshcherskaya, A.V., Mokhov, I.I., et al., Climate changes in Siberia, in Regional Environmental Changes in Siberia and Their Global Consequences, Groisman, P.Ya. and Gutman, G., Eds., Dordrecht: Springer, 2013, pp. 57–109.

    Book  Google Scholar 

  42. Gubanov, V.A., Identification of the nonstationary cyclic component from time series, Zh. Econ. Math. Metody, 2003, vol. 39, no. 1, pp. 76–89.

    Google Scholar 

  43. Gubanov, V.A., Comparison of methods for the seasonal refinement of time series, Nauchn. Tr. Inst. Narodnokhoz. Prognozirovaniya Ross. Akad. Nauk., 2010, vol. 8, pp. 149–169.

    Google Scholar 

  44. Gubanov, V.A., Extrapolation of nonstationary time series with cyclic components, in Upravlenie razvitiem krupnomasshtabnykh sistem (MLSD'2012): Tr. Shestoi mezhdunar. konf. (ezhegod. sb.) (Management of Large-Scale System Development (MLSD-2021): Proceedings of the Sixth International Conference (Annual Compendium), Vasil’ev, S.N. and Tsvirkun, A.D., Eds., 2012, pp. 184–192.

  45. Gubanov, V.A., The spectrum and phases of conjuncture cycles of economic indicators, Anal. Model. Ekon. Sots. Process.: Mat. Komp. Obraz., 2017, vol. 24, no. 5, pp. 23–30.

    Google Scholar 

  46. Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D., Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise, Geophys. J. Int., 2015, vol. 202, no. 2, pp. 920–932. https://doi.org/10.1093/gji/ggv151

    Article  Google Scholar 

  47. Idarmachev, I.Sh., Deshcherevskii, A.V., Marchenko, M.N., and Idarmachev, Sh.G., Two models of seasonal variations in apparent resistance of rocks in the dam in the offline filtration zone of the Chirkey HPP, Tr. Inst Geol. Dag. Nauchn. Tsentra Ross. Akad. Nauk, 2019, no. 4, pp. 56–61. https://doi.org/10.33580/2541-9684-2019-63-4-56-61

  48. Konapala, G., Mishra, A.K., Wada, Y., and Mann, M.E., Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation, Nat. Commun., 2020, vol. 11, p. 3044. https://doi.org/10.1038/s41467-020-16757-w

    Article  Google Scholar 

  49. Kreemer, C. and Zaliapin, I., Spatiotemporal correlation between seasonal variations in seismicity and horizontal dilatational strain in California, Geophys. Res. Lett., 2018, vol. 45, no. 18, pp. 9559–9568. https://doi.org/10.1029/2018GL079536

    Article  Google Scholar 

  50. Kuzmenko, N.V., Tsyrlin, V.A., and Pliss, M.G., Seasonal dynamics of red blood parameters in healthy people in regions with different types of climate: A meta-analysis, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 10, pp. 1271–1292. https://doi.org/10.1134/S0001433821100078

    Article  Google Scholar 

  51. Livezey, R.E., Vinnikov, K.Y., Timofeyeva, M.M., Tinker, R., and van den Dool, H.M., Estimation and extrapolation of climate normals and climatic trends, J. Appl. Meteorol. Climatol., 2007, vol. 46, no. 11, pp. 1759–1776. https://doi.org/10.1175/2007JAMC1666.1

    Article  Google Scholar 

  52. Magritskii, D.V. and Kenzhebaeva, A.Zh., Regularities, characteristics, and causes of the variability of annual and seasonal water runoff in the Ural river basin, Nauka. Tekh. Tekhnol. (Politekh. Vestn.), 2017, no. 3, pp. 39–61.

  53. Majrashi, N.A., Ahearn, T.S., and Waiter, G.D., Brainstem volume mediates seasonal variation in depressive symptoms: A cross sectional study in the UK Biobank cohort, Sci. Rep., 2020, vol. 10, p. 3592. https://doi.org/10.1038/s41598-020-60620-3

    Article  Google Scholar 

  54. Mann, M.E. and Park, J., Greenhouse warming and changes in the seasonal cycle of temperature: Models versus observations, Geophys. Res. Lett., 1996, vol. 23, no. 10, pp. 1111–1114. https://doi.org/10.1029/96GL01066

    Article  Google Scholar 

  55. Marvel, K., Biasutti, M., Bonfils, C., Taylor, K.E., Kushnir, Y., and Cook, B.I., Observed and projected changes to the precipitation annual cycle, J. Clim., 2017, vol. 30, pp. 4983–4995. https://doi.org/10.1175/JCLI-D-16-0572.1

    Article  Google Scholar 

  56. Metya, A., Datye, A., Chakraborty, S., Tiwari, Y.K., Sarma, D., Bora, A., and Gogoi, N., Diurnal and seasonal variability of CO2 and CH4 concentration in a semi-urban environment of Western India, Sci. Rep., 2021, vol. 11, p. 2931. https://doi.org/10.1038/s41598-021-82321-1

    Article  Google Scholar 

  57. Pape, R., Carbon dioxide causes 80% of global warming, Acid News, December 2013, no. 4, p. 17. https://www. airclim.org/acidnews/carbon-dioxide-causes-80-global-warming.

  58. Paromov, V.V., Zemtsov, V.A., and Kopysov, S.G., Climate in West Siberia in the phase of warming slowdown (1986–2015) and prediction of hydroclimatic resources for 2021–2030, Izv. Tomsk. Politekh. Univ., Inzh. Georesur., 2017, vol. 328, no. 1, pp. 62–74.

    Google Scholar 

  59. Pascale, S., Lucarini, V., Feng, X., Porporato, A., and Hasson, S., Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario, Clim. Dyn., 2016, vol. 46, no. 3, pp. 1331–1350. https://doi.org/10.1007/s00382-015-2648-4

    Article  Google Scholar 

  60. Polonsky, A.B. and Shokurova, I.G., Variations of the seasonal behavior of geostrophic circulation in the Black Sea, Phys. Oceanogr., 2010, vol. 20, no. 1, pp. 14–27.

    Article  Google Scholar 

  61. Polson, D., Hegerl, G.C., Zhang, X., and Osborn, T.J., Causes of robust seasonal land precipitation changes, J. Clim., 2013, vol. 26, pp. 6679–6697. https://doi.org/10.1175/JCLI-D-12-00474.1

    Article  Google Scholar 

  62. Qian, C. and Zhang, X., Human influences on changes in the temperature seasonality in mid- to high-latitude land areas, J. Clim., 2015, vol. 28, pp. 5908–5921. https://doi.org/10.1175/JCLI-D-14-00821.1

    Article  Google Scholar 

  63. Rytov, S.M., Vvedenie v statisticheskuyu radiofiziku (Introduction to Statistical Radiophysics), vol. 1: Sluchainye protsessy (Random Processes), Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1976.

  64. Santer, B.D., Po-Chedley, S., Zelinka, M.D., Cvijanovic, I., Bonfils, C., Fu, Q., Kiehl, J., Mears, S., Painter, J., Pallotta, G., Solomon, S., Wentz, F.J., and Zou, Ch.-Zh., Human influence on the seasonal cycle of tropospheric temperature, Science, 2018, vol. 361, no. 6399, eaas8806. https://doi.org/10.1126/science.aas8806

  65. Shimizu, A., Iguchi, M., and Nakamichi, H., Seasonal variations of volcanic ash and aerosol emissions around Sakurajima detected by two lidars, Atmosphere, 2021, vol. 12, no. 3, id 326. https://doi.org/10.3390/atmos12030326

  66. Sidorin, A.Ya., Variations in electric resistance of the upper layer of the Earth’s crust, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 2, pp. 330–334.

    Google Scholar 

  67. Sidorin, A.Ya., Results of precision observations of variations in apparent resistance on the Garm polygon, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 1, pp. 81–84.

    Google Scholar 

  68. Sidorin, A.Y., Synchronous seasonal changes in the hydrological regime and weak earthquake activity in the Garm region, Izv., Atmos. Ocean. Phys., 2012, vol. 48, pp. 724–729.

    Article  Google Scholar 

  69. Thomson, D.J., The seasons, global temperature, and precession, Science, 1995, vol. 268, no. 5207, pp. 59–68. https://doi.org/10.1126/science.268.5207.59

    Article  Google Scholar 

  70. Thoning, K.W., Crotwell, A.M., and Mund, J.W., Atmospheric carbon dioxide dry air mole fractions from continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole: 1973–2019, version 2020-08, Boulder, Colo.: NOAA GML, 2020. https://doi.org/10.15138/yaf1-bk21. ftp://aftp.cmdl.noaa. gov/data/greenhouse_gases/co2/in-situ/surface/.

  71. Timofeeva, A.B. and Yulin, A.V., Variability of the seasonal course of ice coverage of the Laptev Sea in the 1940s, in Sovremennye problemy gidrometeorologii i monitoringa okruzhayushchei sredy na prostranstve SNG: Tez. Mezhdunar. nauch.-prakt. konf., posvyashchennoi 90-letiyu Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta (Current Problems of Hydrometeorology and Environmental Monitoring in the Commonwealth of Independent States: Abstracts of Presentations at the Scientific and Practical Conference Devoted to the 90th Anniversary of the State Hydrometeorological University), St. Petersburg, 2020, pp. 431–433.

  72. Tiwari, S., Rai, R., and Agrawal, M., Annual and seasonal variations in tropospheric ozone concentrations around Varanasi, Int. J. Remote Sens., 2008, vol. 29, no. 15, pp. 4499–4514. https://doi.org/10.1080/01431160801961391

    Article  Google Scholar 

  73. Tiwari, Yo.K., Guha, T., Valsala, V., Lopez, A.S., Cuevas, C., Fernandez, R.P., and Mahajan, A.S., Understanding atmospheric methane sub-seasonal variability over India, Atmos. Environ., 2020, vol. 223, 117206. https://doi.org/10.1016/j.atmosenv.2019.117206

    Article  Google Scholar 

  74. Wang, J., Guan, Y., Wu, L., Guan, X., Cai, W., Huang, J., Dong, W., and Zhang, B., Changing lengths of the four seasons by global warming, Geophys. Res. Lett., 2021, vol. 48, no. 6, e2020GL091753. https://doi.org/10.1029/2020GL091753

  75. WMO Guidelines on the Calculation of Climate Normals, Switzerland: WMO, 2017.

Download references

ACKNOWLEDGMENTS

The possibilities of using the algorithm described in this paper are illustrated by the example of long-term observations of changes in the concentration of carbon dioxide in the atmosphere, which were prepared and posted on the Internet by K.W. Thoning, A.M. Crotwell and J.W. Mund (see (Thoning et al., 2020). We are grateful to them and to all their colleagues who took part in obtaining and posting this data on the Internet, and express our interest in cooperation.

Funding

This work was carried out according to project no. 0144-2019-0011 of the State Order of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Deshcherevskii or A. Ya. Sidorin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshcherevskii, A.V., Sidorin, A.Y. An Algorithm for Adaptive Assessment in Time Series Seasonal Oscillations and Its Testing Based on the Example of Variations in the CO2 Concentration in the Atmosphere. Izv. Atmos. Ocean. Phys. 58, 681–707 (2022). https://doi.org/10.1134/S0001433822070027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433822070027

Keywords:

Navigation