Skip to main content
Log in

Grouping Small Spacecraft for Global Meteorological Observations Using a Microwave Radiometer–Spectrometer

  • SPACE VEHICLES, SYSTEMS, AND PROGRAMS OF INVESTIGATIONS OF THE EARTH FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The current state of microwave radiometry for remote sensing of the Earth is considered. There are currently some 30 satellite microwave radiometers operating and supplying data in the world, while Russia has only one microwave radiometer (MTVZA-GYa) with a 65° sounding angle. We propose to create a constellation of small spacecraft for global meteorological observations on the basis of the MIRS microwave radiometer, which is being developed for the Konvergentsiya space experiment on the Russian Segment of the International Space Station. Optimal parameters for satellite data of the microwave space system are a spatial resolution of 10–12 km and a temporal resolution of 3–6 h for analyzing current atmospheric processes, improving the quality of weather forecast, and predicting emergency situations. This problem can be solved if there are 4 to 8 simultaneous satellites with onboard radiometers in a single orbit of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Anthes, R. and Schreiner, W., Six new satellites watch the atmosphere over Earth’s equator, EOS, Trans. Am. Geophys. Union, 2019, vol. 100. https://doi.org/10.1029/2019EO131779

  2. Boldyrev, V.V., Grobets, N.N., Il’gasov, P.A., Nikitin, O.V., Pantsov, V.U., Prokhorov, U.N., Strel’nikov, N.I., Strel’tsov, A.M., Chernyi, I.V., Chernyavskii, G.M., and Yakovlev, V.V., Satellite microwave imager/sounder MTVZA-GY, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2008a, vol. 5, no. 1, pp. 243–248.

    Google Scholar 

  3. Boldyrev, V.V., Il’gasov, P.A., Pantsov, V.Yu., Prokhorov, Yu.N., Strel’nikov, N.I., Chernyi, I.V., Chernyavskii, G.M., and Yakovlev, V.V., Satellite microwave imager/sounder MTVZA-GYa KA “Meteor-M” no. 1, Vopr. Elektromekh., 2008b, vol. 107, pp. 22–25.

    Google Scholar 

  4. Bommarito, J.J., DMSP Special Sensor Microwave Imager Sounder (SSMIS), Proc. SPIE, 1993, vol. 1935, pp. 230–238. https://doi.org/10.1117/12.152601

    Article  Google Scholar 

  5. Deeter, M.N., A new satellite retrieval method for precipitable water vapor over land and ocean, Geophys. Res. Lett., 2007, vol. 34, L02815.

    Article  Google Scholar 

  6. Deeter, M.N. and Vivekanandan, J., New dual-frequency microwave technique for retrieving liquid water path over land, J. Geophys. Res., 2006, vol. 111, D15209.

    Article  Google Scholar 

  7. Du, J., Kimball, J.S., Jones, L.A., Kim, Y., Glassy, J., and Watts, J.D., A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations, Earth Syst. Sci. Data, 2017, vol. 9, no. 2, pp. 791–808.

    Article  Google Scholar 

  8. Ebert, E., Wilson, L., Weigel, A., Mittermaier, M., Nurmi, P., Gill, P., Göber, M., Joslyn, S., Brown, B., Fowler, T., and Watkins, A., Progress and challenges in forecast verification, Meteorol. Appl., 2013, vol. 20, pp. 130–139.

    Article  Google Scholar 

  9. Ermakov, D.M., Raev, M.D., Suslov, A.I., and Sharkov, E.A., Electronic database of multi-year global thermal radio field of the Earth in the context of a multi-scale study of the ocean–atmosphere system, Issled. Zemli Kosmosa, 2007, no. 1, pp. 7–13.

  10. Ermakov, D.M., Chernushich, A.P., and Sharkov, E.A., Detailing the developmental phases of TC Katrina on interpolated global fields of water vapor, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012b, vol. 9, no. 2, pp. 207–213.

    Google Scholar 

  11. Ermakov, D.M., Sharkov, E.A., Pokrovskaya, I.V., and Chernushich, A.P., Revealing the energy sources of alternating intensity regimes of the evolving Alberto tropical cyclone using microwave satellite sensing data, Izv., Atmos. Ocean. Phys., 2013a, vol. 49, no. 9, pp. 974–985.

    Article  Google Scholar 

  12. Ermakov, D.M., Chernushich, A.P., Sharkov, E.A., and Pokrovskaya, I.V., Searching for an energy source of the intensification of tropical cyclone Katrina using microwave satellite sensing data, Izv., Atmos. Ocean. Phys., 2013b, vol. 49, no. 9, pp. 963–973.

  13. Ermakov, D.M., Raev, M.D., Chernushich, A.P., and Sharkov, E.A., Algorithm for construction of global ocean–atmosphere radiothermal fields with high spatiotemporal sampling based on satellite microwave measurements, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 9, pp. 1041–1052.

  14. Ermakov, D.M., Sharkov, E., A., and Chernushich A.P., Role of tropospheric latent heat advective fluxes in the intensification of tropical cyclones, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1254–1265.

  15. Gaiser, P.W., Germain, K.St., Twarog, E.M., Poe, G.A., Purdy, W., Richardson, D., Grossman, W., Jones, W.L., Spencer, D., Golba, G., Mook, M., Cleveland, J., Choy, L., Bevilacqua, R.M., and Chang, P., The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance, IEEE Trans. Geosci. Remote Sens. 2004, vol. 42, no. 11, pp. 2347–2361.

    Article  Google Scholar 

  16. Gangwar, R.K., Gohil, B.S., and Mathur, A.K., Retrieval of layer averaged relative humidity profiles from MHS observations over tropical region, Int. J. Atmos. Sci., 2014, id 645970. https://doi.org/10.1155/2014/645970

  17. Gohil, B.S., Mathur, A.K., Sarkar, A., and Agarwal, V.K., Atmospheric humidity profile retrieval algorithms for Megha-Tropiques SAPHIR: A simulation study and analysis of AMSU-B data, Proc. SPIE, 2006, vol. 6408, id 640803. https://doi.org/10.1117/12.693566

  18. Kutuza, B.G., Danilychev, M.V., and Yakovlev, O.I., Sputnikovyi monitoring Zemli: mikrovolnovaya radiometriya atmosfery i poverkhnosti (Satellite Earth Monitoring: Microwave Radiometry of the Atmosphere and Surface), Moscow: Lenand, 2016.

  19. Masayoshi, K. and Tatsuya, Y., Regular observation by global change observation mission 1st-water GCOM-W1 (SHIZUKU), NEC Tech. J., 2013, vol. 8, no. 1, pp. 32–35.

    Google Scholar 

  20. Meissner, Th. and Wentz, F.J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incident angles, IEEE Trans. Geosci. Remote Sens., 2012, vol. 50, no. 8, pp. 3004–3026.

    Article  Google Scholar 

  21. Mitnik, L.M., Mitnik, M.L., and Zabolotskikh, E.V., Japan satellite GCOM-W1: simulation, calibration and first results of the retrievals of atmospheric and oceanic parameters, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2013b, vol. 10, no. 3, pp. 135–141.

    Google Scholar 

  22. Pokrovskaya, I.V. and Sharkov, E.A., Tropicheskie tsiklony i tropicheskie vozmushcheniya Mirovogo okeana: khronologiya i evolyutsiya, versiya 3.1 (1983–2005) (Tropical Cyclones and Tropical Disturbances of the World Ocean: Chronology and Evolution, Version 3.1 (1983–2005), Moscow: Poligraf servis, 2011.

  23. Saunders, R., Matricardi, M., and Brunel, P., An improved fast radiative transfer model for assimilation of satellite radiance observations, Q. J. R. Meteorol. Soc., 1998, vol. 125, pp. 1407–1425.

    Article  Google Scholar 

  24. Sevastianov, N.N., Branets, V.N., Panchenko, V.A., Kazinskii, N.V., Kondranin, T.V., and Negodyaev, S.S., Analysis of modern possibilities of creating small spacecraft for remote sensing of the Earth), Tr. MIPT, 2009, vol. 1, no. 3, pp. 14–22.

    Google Scholar 

  25. Sharkov, E.A., Remote Sensing of Tropical Regions, Chichester, N.Y.: John Wiley and Sons/Praxis, 1998.

    Google Scholar 

  26. Sharkov, E.A., Global Tropical Cyclogenesis, Berlin: Springer/Praxis, 2000.

    Google Scholar 

  27. Sharkov, E.A., Remote investigations of atmospheric catastrophes, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1057–1071.

    Article  Google Scholar 

  28. Sharkov, E.A., Global Tropical Cyclogenesis, Berlin: Springer/Praxis, 2012, 2nd ed.

    Book  Google Scholar 

  29. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Evolution of tropical cyclone Gonu and its interaction with the precipitable water field in the equatorial zone, Issled. Zemli Kosmosa, 2008, no. 6, pp. 25–30.

  30. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Evolution of tropical cyclone Hondo in the equatorial water vapor field using the multispectral approach, Issled. Zemli Kosmosa, 2011a, no. 1, pp. 22–29.

  31. Sharkov, E.A., Kim, G.A., and Pokrovskaya, I.V., Energy features of plural tropical cyclogenesis from multispectral satellite observations, Izv., Atmos. Ocean. Phys., 2011b, vol. 47, no. 9, pp. 1084–1091.

    Article  Google Scholar 

  32. Sharkov, E., A., Shramkov, Ya.N., and Pokrovskaya, I.V., Features of the water vapor equatorial field during TC evolution by the example of the Francisco TC (2001), Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011c, vol. 8, no. 3, pp. 310–316.

    Google Scholar 

  33. Sharkov, E.A., Shramkov, Ya.N., and Pokrovskaya, I.V., Boundary parameter of tropical cyclone genesis in the global integral water vapor field, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2011d, vol. 8, no. 1, pp. 280–286.

    Google Scholar 

  34. Sharkov, Y.A., Kuzmin, A.V., Vedenkin, N.N., Jeong, S., Ermakov, D.M., Kvitka, V.E., Kozlova, T.O., Komarova, N.Yu., Minaev, P.Yu., Oh, S., Park, Il.H., Pashinov, E.V., Pozanenko, A.S., Prasolov, V.O., Sadovskii, I.N., et al., Convergence space experiment: Scientific objectives, onboard equipment, and methods of solving inverse problems, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 9, pp. 1437–1456.

    Article  Google Scholar 

  35. Sterlyadkin, V.V., Pashinov, E.V., Kuzmin, A.V., and Sharkov, E.A., Differential radiothermal methods for satellite retrieval of atmospheric humidity profile, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 2, pp. 979–990.

    Article  Google Scholar 

  36. Tremberth, K.F. and Fasullo, J., An apparent hiatus in global warming?, Earth’s Future, 2013, vol. 1, pp. 19–32.

    Article  Google Scholar 

  37. Trokhimovskii, Yu.G., Model of radio thermal emission of rough sea surface, Issled. Zemli Kosmosa, 1997, no. 1, pp. 39–49.

  38. Weng, F. and Grody, N.C., Retrieval of ice cloud parameters using a Microwave Imaging Radiometer, J. Atmos. Sci., 2000, vol. 57, pp. 1069–1081. https://doi.org/10.1175/1520-0469(2000)057

    Article  Google Scholar 

  39. Weng, F., Zou, X., Wang, X., Yang, S., and Goldberg, M.D., Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications, J. Geophys. Res., 2012, vol. 117, D19112. https://doi.org/10.1029/2012JD018144

    Article  Google Scholar 

  40. Woods, A., Medium-Range Weather Prediction: The European Approach, New York: Springer, 2006.

    Google Scholar 

  41. Zhou, W., Xie, S.-P., and Yang, D., Enhanced equatorial warning causes deep-tropical contraction and subtropical monsoon shift, Nat. Clim. Change, 2019, vol. 9, no. 11, pp. 834–839.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Monitoring (State Research Target no. 01.20.0.2.00164) and Cosmos (project 0030-2019-0008) programs, as well as by the Russian Foundation for Basic Research, project no. 18-02-01009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kuzmin or E. A. Sharkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A.V., Ermakov, D.M., Sadovskii, I.N. et al. Grouping Small Spacecraft for Global Meteorological Observations Using a Microwave Radiometer–Spectrometer. Izv. Atmos. Ocean. Phys. 57, 1222–1230 (2021). https://doi.org/10.1134/S000143382109053X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143382109053X

Keywords:

Navigation