Skip to main content

Observations of Space Weather Effects from the Moscow University Nano-satellite Constellation Sozvezdie-270

  • Conference paper
  • First Online:
Solar-Terrestrial Relations and Physics of Earthquake Precursors (STRPEP 2023)

Abstract

Within the framework of the Moscow University space project SOZVEZDIE-270, a constellation of cubesat nano-satellites with a set of instruments is being deployed, which, among other goals, provides monitoring of the near-Earth space radiation environment, control of the geo- and heliophysical conditions. Along with the space constellation, a network of ground receiving stations is also being created. During the project implementation, 11 spacecraft of the cubesat format have been launched to date. Currently, there are 6 such spacecraft operating in near-Earth orbit, which transmit scientific and telemetric data. During 2023–2024 it is planned to launch at least 8 more such satellites into low circular polar orbits. Multi-satellite constellation has been implemented, which makes it possible to carry out simultaneous measurements of particle and quantum fluxes using the same type of instruments at different points in the near-Earth space. Such measurements provide unique information about the sub-relativistic electron flux dynamics, including variations due to precipitation, which is of great importance for understanding the mechanisms of trapped and quasi-trapped electron acceleration and losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Getzelev, I.V., Gusev, A.A., Darchieva, L.A., et al.: The model of space-energy distribution of trapped particle (electron and proton) fluxes inthe Earth radiation belts. MSU, Moscow (1991). (in Russian)

    Google Scholar 

  2. Li, X., et al.: Multi satellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. J. Geophys. Res. 102(A7), 14123–14140 (1997)

    Article  Google Scholar 

  3. Baker, D.N., et al.: A strong CME-related magnetic cloud interaction with the Earth’s magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophys. Res. Lett. 25(15), 2975–2978 (1998)

    Article  Google Scholar 

  4. O’Brien, T., McPherron, R., Sornette, D., Reeves, G., Friedel, R., Singer, H.: Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. 106(A8), 15533–15544 (2001)

    Article  Google Scholar 

  5. Green, J.C., Kivelson, M.G.: Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J. Geophys. Res. 109, A03213 (2004). https://doi.org/10.1029/2003JA010153

    Article  Google Scholar 

  6. Trakhtengerts, VYu., Rycroft, M.J.: Whistle and Alfven Mode Cyclotron Masers in Space. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Ukhorskiy, A.Y., Anderson, B.J., Brandt, P.C., Tsyganenko, N.A.: Storm time evolution of the outer radiation belt: transport and losses. J. Geophys. Res. 111, A11S03 (2006) https://doi.org/10.1029/2006JA011690

  8. Kim, K.-C., et al.: Numerical calculations of relativistic electron drift loss effect. J. Geophys. Res. 113, A09212 (2008). https://doi.org/10.1029/2007JA013011

    Article  Google Scholar 

  9. Ohtani, S., Miyoshi, Y., Singer, H.J., Weygand, J.M.: On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions. J. Geophys. Res. 114, A01202 (2009). https://doi.org/10.1029/2008JA013391

    Article  Google Scholar 

  10. McDonald, W.H., Walt, M.: Distribution function of magnetically confined electrons in a scattering atmosphere. Ann. Phys. 15, 44–48 (1961)

    Article  Google Scholar 

  11. Tverskoy, B.A.: The Earth’s radiation belt theory. In: Proceedings of 9th ICRC, London, vol. 1, pp. 546–547 (1965)

    Google Scholar 

  12. Horne, R.B., Thorne, R.M.: Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30(10), 1527 (2003). https://doi.org/10.1029/2003GL016973

    Article  Google Scholar 

  13. Summers, D., Thorne, R.M.: Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. 108, 1143 (2003). https://doi.org/10.1029/2002JA009489

    Article  Google Scholar 

  14. Millan, R.M., Lin, R.P., Smith, D.M., McCarthy, M.P.: Observation of relativistic electron precipitation during a rapid decrease of trapped relativistic electron flux. Geophys. Res. Lett. 34, L10101 (2007). https://doi.org/10.1029/2006GL028653

    Article  Google Scholar 

  15. Thorne, R.M., et al.: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504, 411–414 (2013). https://doi.org/10.1038/nature12889

    Article  Google Scholar 

  16. Li, W., et al.: Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallelwaves. Geophys. Res. Lett. 41, 6063–6070 (2014). https://doi.org/10.1002/2014GL061260

    Article  Google Scholar 

  17. Onsager, T.G., Rostoker, G., Reeves, H.-J., Obara, G.D., Singer, H.J., Smithtro, C.: Radiation belt electron flux dropouts: local time? Radial and particle-energy dependence. J. Geophys. Res. 107 (2002). https://doi.org/10.1029/2001JA000187

  18. Sadovnichii, V.A., Panasyuk, M.I., Yashin, I.V., et al.: Investigations of the space environment aboard the Universitetsky-Tat’yana and Universitetsky-Tat’yana-2 microsatellites. Solar Syst. Res. 45(1), 3–29 (2011)

    Google Scholar 

  19. Panasyuk, M.I., et al.: Experiment on the Vernov satellite: transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: description of the experiment. Cosmic Res. 54(4), 261–269 (2016). https://doi.org/10.1134/S0010952516040043

  20. Panasyuk, M.I., et al.: Experiment on the Vernov satellite: transient energetic processes in the Earth’s atmosphere and magnetosphere. Part II. First results. Cosmic Res. 54(5), 343–350 (2016). https://doi.org/10.1134/S0010952516050051

  21. Sadovnichii, V.A., Panasyuk, M.A., Amelyushkin, A.M., et al.: Lomonosov” satellite—space observatory to study extreme phenomena in space. Space Sci. Rev. 212(3–4), 1705–1738 (2017). https://doi.org/10.1007/s11214-017-0425-x

    Article  Google Scholar 

  22. Bogomolov, V.V., et al.: A first experience of space radiation monitoring in the multi-satellite experiment of Moscow University in the framework of the Universat-SOCRAT project. Moscow Univ. Phys. Bull. 73(6), 676–683 (2020). https://doi.org/10.3103/S0027134920060089

  23. Prokhorov, M.I., et al.: Analysis of fast variations in electron fluxes in the gap region using the normalized range method based on measurement data on the SiriusSat-1 satellite. Cosmic Res. 60(4), 241–253 (2022). https://doi.org/10.1134/S0010952522040062

    Article  Google Scholar 

  24. Bogomolov, A.V., Bogomolov, V.V., Iyudin, A.F.: Space weather effects from observations by Moscow University Cubesat constellation. Universe 8, 282 (2022). https://doi.org/10.3390/universe8050282

    Article  Google Scholar 

  25. Osedlo, V.I., Antonyuk, G.I., Bengin, V.V., et al.: Educational project of Moscow university “Monitor” based on cubsat constellation. In: Fourth Russian Symposium on Nano-Satellites, RusNanoSat-2021, Samara, 28–30, June 2021. S.P. Korolev Samara National Research University (2021). (in Russian). http://volgaspace.org/rusnanosat/

  26. Bogomolov, V.V., Antonyuk, G.I., Bengin, V.V., et al.: Scientific and educational project “Monitor” based on satellites of cubsat format. In: First International Conference on Space Education “Road to Space”, Moscow, 5–8 October 2021, pp. 53–54. Institute of Space Research, RAS (2021). (in Russian). https://roadtospace.cosmos.ru/docs/2021/RoadToSpace-AbstractBook-2021-v2.pdf

Download references

Acknowledgements

This work was done with the support of MSU Program of Development, Project №23-Ш01-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Svertilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Svertilov, S. et al. (2023). Observations of Space Weather Effects from the Moscow University Nano-satellite Constellation Sozvezdie-270. In: Dmitriev, A., Lichtenberger, J., Mandrikova, O., Nahayo, E. (eds) Solar-Terrestrial Relations and Physics of Earthquake Precursors. STRPEP 2023. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-50248-4_21

Download citation

Publish with us

Policies and ethics