Skip to main content
Log in

Sea Ice Cover Detection of the Far Eastern Seas by Data of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite

  • METHODS AND PROCESSING TOOLS AND INTERPRETATION OF SPACE INFORMATION
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, the technology for determining the ice cover mask using a convolutional neural network as applied to data of a low-resolution multispectral scanning device installed on the Meteor-M No. 2 Russian satellite is considered. The selection criteria for the parameters involved in training the neural network and the process of determining texture size are described. The classification score of the developed model is determined using the machine learning metrics. Validation of the results shows that the algorithm has an accuracy of 94.9 and 96.7% in comparison with ice cover masks according to data of the MOD10 product of the MODIS instrument and archived ice condition maps created in accordance with the international WMO Sea Ice Nomenclature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Akimov, N.P., Badaev, K.V., Gektin, Yu.M., Ryzhakov, A.V., Smelyanskii, M.B., and Frolov, A.G., Low-resolution multi-zone scanning instrument MSU-MR for the space information system “Meteor-M”. Operating principle, evolution, and prospects, Raketno-Kosm. Prib. Inf. Sist., 2015, vol. 2, no. 4, pp. 30–39. https://doi.org/10.17238/issn2409-0239.2015.4.30

    Article  Google Scholar 

  2. Andreev, A.I., Lotareva, Z.N., and Boroditskaya, A.V., PlanetaMeteorTexMaker, Certificate of the state registration of computer program no. 2018665185, Byull., 2018, December 3, 2018.

  3. Andreev, A.I., Shamilova, Yu.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M No. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 459–466.

    Article  Google Scholar 

  4. Baker, N., Joint polar satellite system (JPSS) VIIRS sea ice characterization algorithm theoretical basis document (ATBD), NASA Goddard Space Flight Center: Greenbelt, Md., 2011.

    Google Scholar 

  5. Bloshchinskii, V.D., Kuchma, M.O., Andreev, A.I., High-precision neural networks for cloud and snow detection according to MSU-GS Electro-L satellite data, in Materialy 17-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proceedings of the 17th All-Russian Open Conference “Current Problems of Remote Sensing of the Earth from Space), Moscow: IKI RAN, 2019, p. 18.

  6. Bloshchinskiy, V.D., Kuchma, M.O., Andreev, A.I., and Sorokin, A.A., Snow and cloud detection using a convolutional neural network and low-resolution data from the Electro-L No. 2 satellite, J. Appl. Remote Sens., 2020, vol. 14, no. 3, 034506. https://doi.org/10.1117/1.JRS.14.034506

    Article  Google Scholar 

  7. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, pp. 840–852. https://doi.org/10.1134/S0001433814090060

  8. Bondur, V.G. and Starchenkov, S.A., Methods and programs for aerospace image processing and classification, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2001, no. 3, pp. 118–143.

  9. Boureau, Y., Ponce, J., and LeCun, Y., A theoretical analysis of feature pooling in visual recognition, in 27th Int. Conf. on Machine Learning (ICML’10), Madison: Omnipress, 2010, pp. 111–118.

  10. Crane, R.G. and Anderson, M.R., Satellite discrimination of snow/cloud surfaces, Int. J. Remote Sens., 1984, no. 5, pp. 213–223. https://doi.org/10.1080/01431168408948799

  11. Dorsey, N.E., Properties of Ordinary Water-Substance, New York: Reinhold, 1940. https://doi.org/10.1002/qj.49708134736.

  12. Hall, D.K., Riggs, G.A., Salomonson, V.V., Barton, J.S., Casey, K., Chien, J.Y.L., DiGirolamo, N.E., Klein, A.G., Powell, H.W., and Tait, A.B., Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms, NASA Goddard Space Flight Center: Greenbelt, Md., 2001.

    Google Scholar 

  13. Ioffe, S. and Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015. https://arxiv.org/abs/1502.03167.

  14. Jay Kuo, C.C., Understanding convolutional neural networks with a mathematical model, J. Vis. Commun. Image Representation, 2016, vol. 41, pp. 406–413. https://arxiv.org/abs/1609.04112.

    Article  Google Scholar 

  15. Jezek, K.C., Perovich, D., Golden, K.M., Luther, C., Barber, D., Gogineni, P., Grenfell, T., Jordan, A., Mobley, C., Nghiem, S.V., and Onstott, R., A broad spectral, interdisciplinary investigation of the electromagnetic properties of sea ice, IEEE Trans. Geosci. Remote Sens., 1998, vol. 36, no. 5, pp. 1633–1641. https://doi.org/10.1109/36.718635

    Article  Google Scholar 

  16. Jin, D., Chung, S.R., Lee, K.S., Seo, M., Choi, S., Seong, N.H., Jung, D., Sim, S., Kim, J., and Han, K.S., Development of Geo-KOMPSAT-2A algorithm for sea-ice detection using Himawari-8/AHI data, Remote Sens., 2020, vol. 12, id 2262. https://doi.org/10.3390/rs12142262

  17. Key, J.R., Mahoney, R., Liu, Y., Romanov, P., Tschudi, M., Appel, I., Maslanik, J., Baldwin, D., Wang, X., and Meade, P., Snow and ice products from Suomi NPP VIIRS, J. Geophys. Res.: Atmos., 2013, vol. 118, no. 23, pp. 12816–12830. https://doi.org/10.1002/2013JD020459

    Article  Google Scholar 

  18. Kingma, D.P. and Ba, J.L., Adam: A method for stochastic optimization, 2015. https://arxiv.org/abs/1412.6980.

  19. Kramareva, L.S., Andreev, A.I., Bloshchinskii, V.D., Kuchma, M.O., Davidenko, A.N., Pustatintsev, I.N., Shamilova, Yu.A., Kholodov, E.I., and Korolev, S.P., The use of neural networks in hydrometeorology problems, Vychisl. Tekhnol., 2019a, vol. 24, no. 6, pp. 50–59. https://doi.org/10.25743/ICT.2019.24.6.007

    Article  Google Scholar 

  20. Kramareva, L.S., Andreev, A.I., Simonenko, E.V., and Sorokin, A.A., Snow and cloud detection using convolutional neural network according to the data derived from MSU-MR sensor of the spacecraft Meteor-M No. 2, Procedia Comput. Sci., 2019b, vol. 150, pp. 368–375.

    Article  Google Scholar 

  21. Kramareva, L.S., Pustynskii, I.S., Filei, A.A., Andreev, A.I., Kuchma, M.O., and Bloshchinskii, V.D., Modern possibilities and approaches of the Far East Center of the Planeta Scientific Research Center to solving scientific and applied problems using remote sensing data (50 years in the field of the Earth’s remote sensing), in Materialy 17-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proceedings of the 17th All-Russian Open Conference “Current Problems of Remote Sensing of the Earth from Space), Moscow: IKI RAN, 2019c, p. 5.

  22. Meier, W.N., Markus, T., Comiso, J., Ivano, A., and Miller, J., AMSR2 sea ice algorithm theoretical basis document, NASA Goddard Space Flight Center: Greenbelt, Md., 2017.

    Google Scholar 

  23. Minnett, P.J., GHRSST-PP Sea Ice Working Group (SI-WG) report, in 8th GHRSST-PP Science Team Meeting, Melbourne, Australia, 2007, vol. 1, pp. 36–39.

  24. Mueller, A. and Guido, S., An Introduction to Machine Learning with Python, O’Reilly, 2017.

    Google Scholar 

  25. Pounder, E.R., The Physics of Ice, Oxford: Pergamon, 1965; Moscow: Mir, 1967.

  26. Salomonson, V.V. and Appel, I., Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote Sens. Environ., 2004, no. 89, pp. 351–360. https://doi.org/10.1016/j.rse.2003.10.016

  27. Smirnov, V.G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite Methods for Determination of Sea-Ice Cover Characteristics), St. Petersburg: AANII, 2011.

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 2014, vol. 15, pp. 1929–1958.

    Google Scholar 

  29. Toporov, A.I., Myasoedov, A.G., and Gusev, V.V., Neural network approaches for multispectral analysis of satellite data in designing capital construction projects, in Materialy 17-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proceedings of the 17th All-Russian Open Conference “Current Problems of Remote Sensing of the Earth from Space), Moscow: IKI RAN, 2019, p. 67.

  30. Trenina, I.S., Satellite monitoring of ice cover for operational mapping and long-term research, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2004, vol. 1, no. 1, pp. 303–316.

    Google Scholar 

  31. Zang, L., Zang, L., and Du, B., Deep learning for remote sensing data: A technical tutorial on the state of the art, IEEE Geosci. Remote Sens. Mag., 2016, vol. 4, no. 2, pp. 22–40. https://doi.org/10.1109/MGRS.2016.2540798

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Kuchma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchma, M.O., Lotareva, Z.N. & Slesarenko, L.A. Sea Ice Cover Detection of the Far Eastern Seas by Data of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite. Izv. Atmos. Ocean. Phys. 57, 1179–1187 (2021). https://doi.org/10.1134/S0001433821090528

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090528

Keywords:

Navigation