Skip to main content

Advertisement

Log in

Satellite Monitoring of Multiyear Wildfires and Related Emissions of Harmful Trace Gases into the Air Environment of Australia

  • USE OF SPACE INFORMATION ABOUT THE EARTH STUDYING CATASTROPHIC NATURAL PROCESSES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of wildfire satellite monitoring and estimates of the volumes of related emissions of CO and CO2 carbon-bearing trace gases and PM2.5 fine aerosol for the whole territory of Australia and its individual regions for the period from 2001 to 2020 are presented. The largest values of the areas covered by fire (more than 320 000 km2) are found for 2001, 2002, 2011, and 2012, and the maximum volumes of harmful trace gas emissions are found for September 2011. Abnormally large values of the areas of fires (3.5–25.8 times more than in previous years) are seen for 2019 in New South Wales, a state in southeastern Australia, which were caused by abnormally high temperatures of the earth’s surface. According to TROPOMI (Sentinel-5P satellite), the aerosol plume from wildfires in Australia, which occurred from December 30, 2019, to January 2, 2020, spread over a distance of more than 3000 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ahmad, S.P., Torres, O., Bhartia, P., Leptoukh, G., and Kempler, S., Aerosol index from TOMS and OMI measurements, in 86th AMS Annual Meeting, 2006.

  2. Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., and Wennberg, P.O., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 2011, no. 11, pp. 4029–4072. https://doi.org/10.5194/acp-11-4039-2011

  3. Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J.P., Loyola, D., and Stein Zweers, D., Sentinel-5 precursor/TROPOMI, Level 2 Product User Manual, UV Aerosol Index, 2018.

    Google Scholar 

  4. Bonan, G.B., Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 2008, vol. 320, no. 5882, pp. 1444–1449. https://doi.org/10.1126/science.1155121

    Article  Google Scholar 

  5. Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048.

    Article  Google Scholar 

  6. Bondur, V.G., Modern approaches to processing large hyperspectral and multispectral aerospace data flows, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 9, 840–852. https://doi.org/10.1134/S0001433814090060

    Article  Google Scholar 

  7. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091. https://doi.org/10.1134/S0001433816090103

    Article  Google Scholar 

  8. Bondur, V.G. and Chimitdorzhiev, T.N., Texture analysis of radar images of vegetation, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008a, no. 5, pp. 9–14.

  9. Bondur, V.G. and Chimitdorzhiev, T.N., Remote sensing of vegetation by optical microwave methods, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 2008b, no. 6, pp. 64–73.

  10. Bondur, V.G. and Ginzburg, A.S., Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152. https://doi.org/10.1134/S1028334X16020045

    Article  Google Scholar 

  11. Bondur, V.G. and Gordo, K.A., Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 955–965. https://doi.org/10.1134/S0001433818090104

    Article  Google Scholar 

  12. Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in Northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2016, vol. 53, no. 9, pp. 859–874. https://doi.org/10.1134/S0001433817090055

    Article  Google Scholar 

  13. Bondur, V.G., Tsidilina, M.N., Kladov, V.L., and Gordo, K.A., Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data, Dokl. Earth Sci., 2019a, vol. 485, pp. 461–464. https://doi.org/10.1134/S1028334X19040202

    Article  Google Scholar 

  14. Bondur, V.G., Tsidilina, M.N., and Cherepanova, E.V., Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1238–1253. https://doi.org/10.1134/S000143381909010X

    Article  Google Scholar 

  15. Bondur, V.G., Voronova, O.S., Cherepanova, E.V., Tsidilina, M.N., and Zima, A.L., Spatiotemporal analysis of multi-year wildfires and emissions of trace gases and aerosols in Russia based on satellite data, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 9, pp. 1457–1469. https://doi.org/10.1134/S0001433820120348

    Article  Google Scholar 

  16. Bondur, V.G., Gordo, K.A., Voronova, O.S., and Zima, A.L., Satellite monitoring of anomalous wildfires in Australia, Frontiers Earth Sci., 2021, id 617252. https://doi.org/10.3389/feart.2020.617252

  17. Bradstock, R.A., Boer, M.M., Cary, G.J., Price, O.F., Williams, R.J., Barrett, D., Cook, G., Gill, A.M., Hutley, L.B.W., Keith, H., Maier, S.W., Meyer, M., Roxburgh, S.H., and Russell-Smith, J., Modelling the potential for prescribed burning to mitigate carbon emissions from wildfires in fire-prone forests of Australia, Int. J. Wildland Fire, 2012, vol. 21, pp. 629–639. https://doi.org/10.1071/WF11023

    Article  Google Scholar 

  18. Canadell, J.G. and Raupach, M.R., Managing forests for climate change mitigation, Science, 2008, vol. 320, no. 5882, pp. 1456–1457. https://doi.org/10.1126/science.1155458

    Article  Google Scholar 

  19. Certini, G., Effects of fire on properties of forest soils: A review, Oecologia, 2005, vol. 143, pp. 1–10. https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  20. Desservettaz, M., Paton-Walsh, C., Griffith, D.W.T., et al., Emission factors of trace gases and particles from tropical savanna fires in Australia, J. Geophys. Res.: Atmos., 2017, vol. 122, pp. 6059–6074. https://doi.org/10.1002/2016JD025925

    Article  Google Scholar 

  21. Di Virgilio, G., Evans, J.P., Blake, S.A.P., Armstrong, M., Dowdy, A.J., Sharples, J., and McRae, R., Climate change increases the potential for extreme wildfires, Geophys. Res. Lett., 2019, vol. 46, pp. 8517–8526. https://doi.org/10.1029/2019GL083699

    Article  Google Scholar 

  22. Dowdy, A.J., Climatological variability of fire weather in Australia, J. Appl. Meteorol. Climatol., 2018, vol. 57, pp. 221–234. https://doi.org/10.1175/JAMC-D-17-0167.1

    Article  Google Scholar 

  23. Filkov, A., Ngo, T., Matthews, S., Telfer, S., and Penman, T., Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends, J. Safety Sci. Resilience, 2020, vol. 1, no. 1, pp. 44–56. https://doi.org/10.1016/j.jnlssr.2020.06.009

    Article  Google Scholar 

  24. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, pp. 168–182.

    Article  Google Scholar 

  25. Giglio, L., Schroeder, W., and Justice, C.O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 2016, vol. 178, pp. 31–41. https://doi.org/10.1071/WF03054

    Article  Google Scholar 

  26. Ginzburg, A.S., Gubanova, D.P., and Minashkin, V.M., Influence of natural and anthropogenic aerosols on global and regional climate, Russ. J. Gen. Chem., 2009, vol. 79, no. 5, pp. 2062–2070.

    Article  Google Scholar 

  27. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri, R.K. and Meyer, L.A., Eds., Geneva, Switzerland: IPCC, 2014.

    Google Scholar 

  28. Isaev, A.S. Korovin, G.N., and Sukhikh, V.I., Ekologicheskie problemy pogloshcheniya uglekislogo gaza posredstvom lesovosstanovleniya i lesorazvedeniya v Rossii: analiticheskiy obzor (Environmental Problems of Carbon Dioxide Absorption Through Reforestation and Afforestation in Russia: An Analytical Review), Moscow: Tsentr ekologicheskoi politiki Rossii, 1995.

  29. Koppmann, R., Czapiewski, K., and Reid, J, A review of biomass burning emissions, Part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds, Atmos. Chem. Phys. Discuss., 2005, vol. 5. https://doi.org/10.5194/acpd-5-10455-2005

  30. Kulmala, M., Lappalainen, H.K., Petäjä, T., Kurten, T., Kerminen, V.M., Viisanen, Y., Hari, P., Sorvari, S., Back, J., Bondur, V., Kasimov, N., Kotlyakov, V., Matvienko, G., Baklanov, A., Guo, H.D., et al., Introduction: The Pan-Eurasian Experiment (PEEX)—multidisciplinary, multiscale and multicomponent research and capacity-building initiative, Atmos. Chem. Phys., 2015, no. 15, pp. 13085–13096. https://doi.org/10.5194/acp-15-13085-2015

  31. Kulmala, M., Lappalainen, H.K., Petäjä, T., Kerminen, V.-M., Viisanen, Y., Matvienko, G., Melnikov, V., Baklanov, A., Bondur, V., Kasimov, N., and Zilitinkevich, S., Pan-Eurasian Experiment (PEEX) Program: Grand challenges in the Arctic-Boreal context, Geogr. Environ. Sustainability, 2016, vol. 9, no. 2, pp. 5–18. https://doi.org/10.15356/2071-9388_02v09_2016_01

    Article  Google Scholar 

  32. Lappalainen, H., Petäjä, T., Kujansuu, J., Kerminen, V., Skorokhod, A., Kasimov, N., Bondur, V., et al., Pan Eurasian Experiment (PEEX)—a research initiative meeting the grand challenges of the changing environment of the northern pan-Eurasian Arctic-Boreal areas, Geogr. Environ. Sustainability, 2014, vol. 7, no. 2, pp. 13–48.

    Article  Google Scholar 

  33. Lappalainen, H.K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Kulmala, M., et al., Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the Northern Eurasian region, Atmos. Chem. Phys., 2016, vol. 16, no. 22, pp. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016

    Article  Google Scholar 

  34. Liu, W., Lu, F., Luo, Y., et al., Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China, Ecol. Evol., 2017, vol. 7, pp. 6220–6230. https://doi.org/10.1002/ece3.3188

    Article  Google Scholar 

  35. Matthews, S., Sullivan, A.L., Watson, P., and Williams, R.J., Climate change, fuel and fire behaviour in a eucalypt forest, Global Change Biol., 2012, vol. 18, pp. 3212–3223. https://doi.org/10.1111/j.1365-2486.2012.02768.x

    Article  Google Scholar 

  36. NASA. Fire Information for Resource Management System. https://firms.modaps.eosdis.nasa.gov

  37. NASA. Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center. https:// la-dsweb.modaps.eosdis.nasa.gov

  38. Paton Walsh, C., Deutscher, N.M., Griffith, D.W.T., Forgan, B.W., Wilson, S.R., Jones, N.B., and Edwards, D.P., Trace gas emissions from savanna fires in northern Australia, J. Geophys. Res., 2010, vol. 115, D16314. https://doi.org/10.1029/2009JD013309

    Article  Google Scholar 

  39. Pellegrini, A., Ahlström, A., Hobbie, S., et al., Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity, Nature, 2018, vol. 553, pp. 194–198. https://doi.org/10.1038/nature24668

    Article  Google Scholar 

  40. Seiler, W. and Crutzen, P.J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Clim. Change, 1980, vol. 2, no. 3, pp. 207–247.

    Article  Google Scholar 

  41. Zweers Stein, D.C., Algorithm theoretical baseline document for Sentinel-5 precursor of the UV aerosol index, Royal Netherlands Meteorological Institute, 2018.

    Google Scholar 

  42. Tian, B., Manning, E., Fetzer, E., Olsen, E., Wong, S., Susskind, J., et al., AIRS/AMSU/HSB version 6 level 3 product user guide, Jet Propulsion Laboratory, Pasadena, Calif., Tech. Rep., 2013.

    Google Scholar 

  43. Tomshin, O.A., Protopopov, A.V., and Solov’ev, V.S., Study of atmospheric aerosol and carbon monoxide variations over forest fires, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 1, pp. 145–150.

    Google Scholar 

  44. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., and Soja, A.J., The Fire INventory from NCAR (FINN): A high-resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 2011, vol. 4, pp. 625–641. https://doi.org/10.5194/gmd-4-625-2011

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, MOST (China), and DST (India) as part of scientific project no. 19-55-80021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Voronova, O.S., Gordo, K.A. et al. Satellite Monitoring of Multiyear Wildfires and Related Emissions of Harmful Trace Gases into the Air Environment of Australia. Izv. Atmos. Ocean. Phys. 57, 1029–1041 (2021). https://doi.org/10.1134/S0001433821090449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821090449

Keywords:

Navigation