Skip to main content
Log in

Spatiotemporal Analysis of Multi-Year Wildfires and Emissions of Trace Gases and Aerosols in Russia Based on Satellite Data

  • USING SPACE-BASED INFORMATION ABOUT THE EARTH SPACE MONITORING OF WILDFIRES, THEIR CONSEQUENCES, AND FOREST ECOSYSTEMS
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An analysis is performed of the annual and intraseasonal dynamics of wildfire areas and volumes of trace gas components (CO, CO2, CH4, NO, and NO2) and fine aerosols (PM2.5) caused by wildfires in Russia and its large regions over 19 years. The analysis is based on results from satellite monitoring, allowing for the effect anomalies in weather and climate have on the intensity of fires. It is shown that the average size of areas burned monthly in the European part of Russia fell by half in April, May, and September, and by a factor of four in July and August over the period 2011 to 2019, compared to the respective months in 2001–2010. A negative trend is observed for spring and autumn from 2010 to 2019 in the Siberian and Ural federal districts, along with a summer increase in fire areas. It is found that over 19 years, the dynamics of the burned areas is weakly defined for most months of the fire season in the Far Eastern Federal District. Extremely high volumes of emissions of different trace gases (including CO and CO2) and aerosols caused by wildfires were detected in the Siberian Federal District in 2003 and 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., and Wennberg, P.O., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 2011, vol. 11, pp. 4039–4072. https://doi.org/10.5194/acp-11-4039-2011

    Article  Google Scholar 

  2. Bartalev, S.A., Egorov, V.A., Efremov, V.Yu., Loupyan, E.A., Stytsenko, F.V., and Flitman, E.V., Burnt area assessment based on the combined use of MODIS and LANDSAT-TM satellite data of various spatial resolution, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 9–26.

    Google Scholar 

  3. Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048.

    Article  Google Scholar 

  4. Bondur, V.G., Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia, Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 9, pp. 1078–1091. https://doi.org/10.1134/S0001433816090103

    Article  Google Scholar 

  5. Bondur, V.G. and Ginzburg, A.S., Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring, Dokl. Earth Sci., 2016, vol. 466, no. 2, pp. 148–152. https://doi.org/10.1134/S1028334X16020045

    Article  Google Scholar 

  6. Bondur, V.G. and Gordo, K.A., Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 955–965. https://doi.org/10.1134/S0001433818090104

    Article  Google Scholar 

  7. Bondur, V.G., Gordo, K.A., and Kladov, V.L., Spacetime distributions of wildfire areas and emissions of carbon-containing gases and aerosols in northern Eurasia according to satellite-monitoring data, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 859–874. https://doi.org/10.1134/S0001433817090055

    Article  Google Scholar 

  8. Bondur, V.G., Tsidilina, M.N., Kladov, V.L., and Gordo, K.A., Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data, Dokl. Earth Sci., 2019a, vol. 485, no. 2, pp. 461–464. https://doi.org/10.1134/S1028334X19040202

    Article  Google Scholar 

  9. Bondur, V.G., Tsidilina, M.N., and Cherepanova, E.V., Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation, Izv., Atmos. Ocean. Phys., 2019b, vol. 55, no. 9, pp. 1238–1253. https://doi.org/10.1134/S000143381909010X

    Article  Google Scholar 

  10. Bondur, V.G., Mokhov, I.I., Voronova, O.S., and Sitnov, S.A., Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes, Dokl. Earth Sci., 2020, vol. 492, no. 1, pp. 370–375. https://doi.org/10.1134/S1028334X20050049

    Article  Google Scholar 

  11. Decree of the Government of the Russian Federation of November 10, 2015, no. 1213.

  12. Forecast of the emergency situation in the Russian Federation for 2020, Vserossiyskiy nauchno-issledovatel’skiy institut po problemam grazhdanskoy oborony i chrezvychaynyh situatsiy MCHS Rossii, December 12, 2019, no. 6276-19-3-2.

  13. Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 2010, vol. 114, pp. 168–182.

    Article  Google Scholar 

  14. Giglio, L., Schroeder, W., and Justice, C.O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 2016, vol. 178, pp. 31–41.

    Article  Google Scholar 

  15. He, Y., Chen, F., Jia, H., and Bondur, V.G., Different drought legacies between rain-fed and irrigated croplands in a typical Russian agricultural region, Remote Sens., 2020, vol. 12, no. 11, id 1700. https://doi.org/10.3390/rs12111700

  16. Isaev, A.S. Korovin, G.N., et al., Ekologicheskie problemy pogloshcheniya uglekislogo gaza posredstvom lesovosstanovleniya i lesorazvedeniya v Rossii: Analiticheskii obzor (Environmental Issues of Carbon Dioxide Absorption through Reforestation and Afforestation in Russia: An Analytical Review), Moscow: Tsentr ekologicheskoi politiki Rossii, 1995.

  17. Konovalov, I.B., Lvova, D.A., Beekmann, M., Jethva, H., Mikhailov, E.F., Paris, J.-D., Belan, B.D., Kozlov, V.S., Ciais, P., and Andreae, M.O., Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths, Atmos. Chem. Phys., 2018, vol. 18, pp. 14889–14924. https://doi.org/10.5194/acp-18-14889-2018

    Article  Google Scholar 

  18. Lin, Z., Chen, F., Li, B., Yu, B., Jia, H., Zhang, M., and Liang, D., A contextual and multitemporal active-fire detection algorithm based on FengYun-2G S-VISSR data, IEEE Trans. Geosci. Remote Sens., 2019, vol. 57, no. 11. https://doi.org/10.1109/TGRS.2019.2923248

  19. Pu, R., Gong, P., Li, Z., and Scarborough, J., A dynamic algorithm for wildfire mapping with NOAA/AVHRR data, Int. J. Wildland Fire, 2004, vol. 13, no. 3, pp. 275–285. https://doi.org/10.1071/WF03054

    Article  Google Scholar 

  20. Seiler, W. and Crutzen, P.J., Estimates of gross and net fluxes of carbon between the biosphere and atmosphere from biomass burning, Clim. Change, 1980, vol. 2, no. 3, pp. 207–247.

    Article  Google Scholar 

  21. Shchetinskii, V.E., Kotelnikov, R.V., Sementin, V.L., Lupyan, E.A., Flitman, E.V., Shcherbenko, E.V., Galleev, A.A., Efremov, V.Yu., Tolpin, V.A., Mazarov, A.A., Krasheninnikova, Yu.S., and Ershov, D.V., Primenenie informatsionnoi sistemy distantsionnogo monitoringa “ISDM Rosleskhoz” dlya opredeleniya pozharnoi opasnosti v lesakh Rossiiskoi Federatsii (Izdanie vtoroe) (The Use of the “ISDM Rosleskhoz” Information System of Remote Monitoring in Assessing the Fire Hazard in Forests of the Russian Federation (Second Edition)), Pushkino: Avialesookhrana, 2008.

  22. Shvidenko, A.Z., Shchepashchenko, D.G., Vaganov, E.A., Sukhinin, A.I., Maksyutov, Sh.Sh., McCallum, I., and Lakyda, I.P., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Dokl. Earth Sci., 2011, vol. 441, no. 4, pp. 1678–1682.

    Article  Google Scholar 

  23. Sitnov, S.A., Mokhov, I.I., and Dzhola, A.V., Impact of Siberian wildfires on the content of carbon monoxide in the atmosphere over European Russia in summer 2016, Opt. Atmos. Okeana, 2017, vol. 30, no. 2. https://doi.org/10.15372/AOO20170207

  24. Sochilova, E.N. and Ershov, D.V., Mapping and assessment of forest-damaged fires and fire carbon emissions from satellite images of high spatial resolution, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2007, vol. 2, no. 4, pp. 322–331.

    Google Scholar 

  25. Vinogradova, A.A., Smirnov, N.S., and Korotkov, V.N., Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic, Atmos. Oceanic Opt., 2016, vol. 29, no. 6, pp. 545–550. https://doi.org/10.1134/S1024856016060166

    Article  Google Scholar 

  26. Vivchar, A.V., Moiseenko, K.B., and Pankratova, N.V., Estimates of carbon monoxide emissions from wildfires in northern Eurasia for air quality assessment and climate modeling, Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 3, pp. 281–293.

    Article  Google Scholar 

  27. Vorob’ev, Yu.L., Akimov, V.A., and Sokolov, Yu.N., Lesnye pozhary na territorii Rossii: sostoyanie i problemy (Forest Fires in Russia: Conditions and Problems), Moscow: Deks-Press. 2004.

  28. Voronova, O.S., Zima, A.L., Kladov, V.L., and Cherepanova, E.V., Anomalous wildfires in Siberia in summer 2019, Issled. Zemli Kosmosa, 2020, no. 1, pp. 70–82.

  29. Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., and Soja, A.J., The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 2011, vol. 4, pp. 625–641. https://doi.org/10.5194/gmd-4-625-2011

    Article  Google Scholar 

  30. Xu, G. and Zhong, X., Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8, Remote Sens. Lett., 2017, vol. 8, no. 11, pp. 1052–1061. https://doi.org/10.1080/2150704X.2017.1350303

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, MOST (China) and DST (India) according to the research project no. 19-55-80021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Voronova, O.S., Cherepanova, E.V. et al. Spatiotemporal Analysis of Multi-Year Wildfires and Emissions of Trace Gases and Aerosols in Russia Based on Satellite Data. Izv. Atmos. Ocean. Phys. 56, 1457–1469 (2020). https://doi.org/10.1134/S0001433820120348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820120348

Keywords:

Navigation