Skip to main content
Log in

Influence of Wind Direction on the Size Distribution of Aeolian Microparticles

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In this paper, microparticle size distributions due to the wind direction - frontal and tangential in respect to the prevailing orientation of the dune crests are analyzed using field measurement data obtained during the 2010–2020 summer seasons in the arid conditions of the Near Caspian Lowland (Kalmykia, Russia). A smaller number of coarse-fraction microparticles (2–5 μm) and a larger number of fine-fraction microparticles (0.2–2 μm) are observed for the frontal wind direction in comparison with data for the tangential direction under similar conditions. The concentration of microparticles decreases for the frontal wind direction and increases for the tangential wind direction with the increase in friction dynamic velocity. Dust aerosol generation is associated with the movement of large particles near the surface by means of saltation or rolling (movement near the surface). The sizes of the generated microparticles are related to the momentum transferred to the particles in the layer. Concentrations of the fine fraction microparticles are associated with the presence of secondary aeolian structures on the surface of the windward slope and the relative change in the slope angle of inclination under the wind of different directions. This fraction generation due to shaking is more likely to occur when large particles move near the surface. The coarse-fraction concentrations are determined by the chipping processes that occur when a saltating particle blown from the top of the dune falls to the surface. When the wind direction is tangential and large irregularly shaped particles from the accumulation zone on the leeward slope are involved, the air circulation over the leeward slope weakens and the chipping processes intensify. The analytical derivation of the microparticle size distribution function and the comparison with field measurement data makes it possible to assess these effects in relation to the variation of angles of the aeolian-structure surface inclination and of particle velocities, which occur when the wind veers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Y. Shao, Physics and Modelling of Wind Erosion (Springer, 2008).

    Google Scholar 

  2. P. D’Odorico, “Global desertification: Drivers and feedbacks,” Adv. Water Resour. 51, 326–344 (2013).

    Article  Google Scholar 

  3. B. A. Maher, J. M. Prospero, D. Mackie, et al., “Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum,” Earth Sci. Rev. 99 (1–2), 61–97 (2010).

    Article  Google Scholar 

  4. B. Michelsen, S. Strobl, E. J. R. Parteli, and T. Poschel, “Two-dimensional airflow modeling underpredicts the wind velocity over dunes,” Sci. Rep. 5 (1), 16572 (2015).

    Article  Google Scholar 

  5. S. Dey, P. Paul, and E. Padhi, “Conditional spatially averaged turbulence and dispersion characteristics in flow over two-dimensional dunes,” Phys. Fluids 32 (6), 065106 (2020).

    Article  Google Scholar 

  6. P. M. Brito, A. D. Ferreira, T. Thiis, and A. C. M. Sousa, “Prediction of erosion intermittency using large eddy simulation,” Geomorphology 364, 107179 (2020).

    Article  Google Scholar 

  7. S. Dupont, G. Bergametti, and S. Simoens, “Modelling aeolian erosion in presence of vegetation,” Procedia IUTAM 17, 91–100 (2015).

    Article  Google Scholar 

  8. O. Duran, P. Claudin, and B. Andreotti, “Direct numerical simulations of aeolian sand ripples,” Proc. Natl. Acad. Sci. 111 (44), 15665–15668 (2014).

    Article  Google Scholar 

  9. S. J. Bennet and J. L. Best, “Mean flow and turbulence structure over fixed, two-dimensional dunes: Implications for sediment transport and bedform stability,” Sedimentology 42 (3), 491–513 (1995).

    Article  Google Scholar 

  10. R. Faria, A. D. Ferreira, J. L. Sismeiro, et al., “Wind tunnel and computational study of the stoss slope effect on the aeolian erosion of transverse sand dunes,” Aeolian Res. 3 (3), 303–314 (2011).

    Article  Google Scholar 

  11. R. S. Anderson, “The pattern of grainfall deposition in the lee of aeolian dunes,” Sedimentology 35 (2), 175–188 (1988).

    Article  Google Scholar 

  12. Z. Dong, P. Lu, Z. Zhang, and J. Lu, “Aeolian transport over a developing transverse dune,” J. Arid Land 6 (3), 243–254 (2014).

    Article  Google Scholar 

  13. R. Emmerling, “The instantaneous structure of the wall pressure under a turbulent boundary layer flow,” Mitt. Max-Planck Inst. Stromungsforsch., No. 9, 1–25 (1973).

  14. C. Wang, “Realistic dune field surface stress prediction (technical report),” (2020). https://arxiv.org/pdf/ 2004.05136.

  15. A. Siminovich, T. Elperin, I. Katra, et al., “Numerical study of shear stress distribution over sand ripples under terrestrial and Martian conditions,” J. Geophys. Res.: Planets 124 (1), 175–185 (2019).

    Article  Google Scholar 

  16. C. A. Chapman, I. J. Walker, P. A. Hesp, et al., “Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune,” Geomorphology 151–152, 1–12 (2012).

    Article  Google Scholar 

  17. C. Turpin and J.-L. Harion, “Numerical modeling of flow structures over various flat-topped stockpiles height: Implications on dust emissions,” Atmos. Environ. 43 (35), 5579–5587 (2009).

    Article  Google Scholar 

  18. E. A. Malinovskaya, “Windward aeolian slope formation model,” Izv., Atmos. Ocean. Phys. 55 (2) 218–226 (2019).

    Article  Google Scholar 

  19. N. Huang, F. Shi, and R. S. V. Pelt, “The effects of slope and slope position on local and upstream fluid threshold friction velocities. Earth surface processes and landforms,” J. Brit. Geomorphol. Res. Group 33 (12), 1814–1823 (2008).

    Google Scholar 

  20. R. Greeley and D. J. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan (Cambridge University Press, Cambridge, 1985).

    Book  Google Scholar 

  21. R. B. Stull, “Mean boundary layer characteristics,” in An Introduction to Boundary Layer Meteorology (Springer, Dordrecht, 1988), pp. 1–27.

    Book  Google Scholar 

  22. M. Lammel, D. Rings, and K. Kroy, “A two-species continuum model for aeolian sand transport,” New J. Phys. 14 (9), 093037 (2012).

    Article  Google Scholar 

  23. T. Pahtz and O. Duran, “Unification of aeolian and fluvial sediment transport rate from granular physics,” Phys. Rev. Lett. 124 (16), 168001 (2020).

    Article  Google Scholar 

  24. J. Tatarko, M. Kucharski, H. Li, and H. Li, “PM2.5 and PM10 emissions by abrasion of agricultural soils,” Soil Tillage Res. 200, 104601 (2020).

    Article  Google Scholar 

  25. G. I. Gorchakov, A. V. Karpov, G. A. Kuznetsov, and D. V. Buntov, “Quasiperiodic saltation in the windsand flux over desertified areas,” Atmos. Oceanic Opt. 29 (6), 501–506 (2016).

    Article  Google Scholar 

  26. Y. Liu, H. Fang, L. Huang, and G. He, “Numerical simulation of the production of three-dimensional sediment dunes,” Phys. Fluids 31 (9), 096603 (2019).

    Article  Google Scholar 

  27. S. C. Alfaro, A. Gaudichet, L. Gomes, and M. Maille, “Modeling the size distribution of a soil aerosol produced by sandblasting,” J. Geophys. Res.: Atmos. 102 (D10), 11239–11249 (1997).

    Article  Google Scholar 

  28. D. J. Jerolmack, M. D. Reitz, and R. L. Martin, “Sorting out abrasion in a gypsum dune field,” J. Geophys. Res.: Earth Surf. 116 (F2), F02003 (2011).

    Google Scholar 

  29. M. A. Rice and I. K. McEwan, “Crust strength: A wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces,” Earth Surf. Processes Landforms 26 (7), 721–733 (2001).

    Article  Google Scholar 

  30. O. E. Semenov, Introduction to Experimental Meteorology and Climatology of Sandstorms (Fizmatkniga, Moscow, 2020) [in Russian].

    Google Scholar 

  31. N. Swet, J. F. Kok, Y. Huang, et al., “Low dust generation potential from active sand grains by wind abrasion,” J. Geophys. Res.: Earth Surf. 125 (7), e2020JF00554 (2020).

  32. A. S. Kozlov, A. N. Ankilov, and A. M. Baklanov, “Study of mechanical processes of submicron aerosol formation,” Opt. Atmos. Okeana 13 (6–7), 664–666 (2000).

    Google Scholar 

  33. Y. Shao, J. Zhang, M. Ishizuka, et al., “Dependency of particle size distribution at dust emission on friction velocity and atmospheric boundary-layer stability,” Atmos. Chem. Phys. 20 (21), 12939–12953 (2020).

    Article  Google Scholar 

  34. R. Fernandes, S. Dupont, and E. Lamaud, “Investigating the role of deposition on the size distribution of near-surface dust flux during erosion events,” Aeolian Res. 37, 32–43 (2019).

    Article  Google Scholar 

  35. Y. Shao, W. Nickling, G. Bergametti, et al., “A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics,” Aeolian Res. 19, 37–54 (2015).

    Article  Google Scholar 

  36. J. Zhang, Z. Teng, H. Ning, et al., “Surface renewal as a significant mechanism for dust emission,” Atmos. Chem. Phys. 16 (24), 15517–15528 (2016).

    Article  Google Scholar 

  37. G. S. Golitsyn, I. G. Granberg, A. E. Aloyan, et al., “Study of emissions and transport of dust aerosol in Kalmykia Black Lands,” J. Aerosol Sci. 28, 725–S726 (1997).

    Article  Google Scholar 

  38. G. S. Golitsyn, A. V. Andronova, B. V. Vinogradov, et al., “Removal of soil particles in arid regions (Kalmykia, Aral),” in Int. Conf. “Physics of Atmospheric Aerosol” Commemorating the 85th Anniversary of G. V. Rozenberg (Dialog-MGU, Moscow, 1999), pp. 127–138 [in Russian].

  39. O. G. Chkhetiani, E. B. Gledzer, M. S. Artamonova, and M. A. Iordanskii, “Dust resuspension under weak wind conditions: Direct observations and model,” Atmos. Chem. Phys. 12 (11), 5147–5162 (2012).

    Article  Google Scholar 

  40. D. P. Gubanova, O. G. Chkhetiani, T. M. Kuderina, et al., “Experimental studies of aerosols in the atmosphere of semiarid landscapes of Kalmykia: 1. Microphysical parameters and mass concentration of aerosol particles,” Izv., Atmos. Ocean. Phys. 54 (8), 777–793 (2018).

    Article  Google Scholar 

  41. O. G. Chkhetiani, N. V. Vazaeva, A. V. Chernokulsky, et al., “Analysis of mineral aerosol in the surface layer over the Caspian lowland desert by the data of 12 summer field campaigns in 2002–2020,” Atmosphere 12 (8), 985 (2021).

    Article  Google Scholar 

  42. L. G. Dobrin, “The formation and structure of aeolian stratification in barkhan sands,” in History of the Operation of Repetek Sand-Desert Station (AN Turkmen. SSR, Ashkhabad, 1963), pp. 73–80 [in Russia].

  43. T. Ju, X. Li, H. Zhang, et al., “Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions,” Atmos. Environ. 176, 82–90 (2018).

    Article  Google Scholar 

  44. Y. Shao, “A model for mineral dust emission,” J. Geophys. Res.: Atmos. 106 (D17), 20239–20254 (2001).

    Article  Google Scholar 

  45. O. G. Chkhetiani, E. B. Gledzer, and N. V. Vazaeva, “Measurements and approximations for submicron-aerosol size distribution functions,” Earth Space Science 8, e2020EA001616 (2021).

  46. M. Corn, “The adhesion of solid particles to solid surfaces, 1. A review,” J. Air Pollut. Control Assoc. 11 (11), 523–528 (1961).

    Article  Google Scholar 

  47. V. M. Kornev and L. I. Razvorotneva, “Comparative estimates of the strength of dry and wet quartz in grinding,” J. Appl. Mech. Tech. Phys. 39 (1), 121–126 (1998).

    Article  Google Scholar 

  48. X. L. Li, M. Klose, Y. Shao, and H. S. Zhang, “Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of a CTDE scheme,” J. Geophys. Res.: Atmos. 119 (16), 9980–9992 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.A. Lebedev, Yu.A. Obvintsev, A.A. Khapaev, and B.A. Khartskhaev (Komsomolsky, Kalmykia) for their assistance in organizing and carrying out the field measurements.

Funding

This work was supported by the Russian Science Foundation, project no. 20-17-00214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Malinovskaya.

Additional information

Translated by N. Semenova

The paper is based on the oral presentation at the All-Russian Conference “Turbulence, Atmospheric Dynamics, and Climate” dedicated to the memory of Academician A.M. Obukhov (Moscow, November 10–12, 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovskaya, E.A., Chkhetiani, O.G. & Maksimenkov, L.O. Influence of Wind Direction on the Size Distribution of Aeolian Microparticles. Izv. Atmos. Ocean. Phys. 57, 472–485 (2021). https://doi.org/10.1134/S0001433821050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821050108

Keywords:

Navigation